March 7, 2022

The Mighty Chickadee – How a Handful of Feathers Conquers Winter

The Mighty Chickadee – How a Handful of Feathers Conquers Winter

A black-capped chickadee on a branch bearing a few dried up berries.

A Manitoba winter, especially this one, without the friendly, buzzy, “chick-a-dee-dee” calls of our neighbourhood black-capped chickadees (Poecile atricapillus) would be that much harder to endure. The prolonged cold spells, incredible wind chills, and many blizzards made these birds and their cheery presence even more welcome at our backyard feeders. But while we were entertained watching from behind the window of a warm house, these tiny, 14-gram balls of fluff (just a little heavier than a AAA battery) were flitting about outside in -35°C temperatures amidst blowing snow. How do they do it?!

There certainly is a long list of challenges for a small bird to survive a northern winter. Low temperatures are the obvious one. Small animals have a higher surface to volume ratio than larger animals, meaning they expose relatively more body surface to the elements per gram of weight – small animals lose heat more quickly than large animals.  Chickadees have a normal body temperature of about 40°C, meaning that on a day of -40°C (not unusual over much of its northern distribution in Manitoba) there is an 80°C gradient through 2 cm of feathers from outside air to skin. And winter days are short, meaning fewer daylight hours to gather enough food to maintain that body temperature.

Chickadees have several adaptations to fend off winter’s worst. Feathers, as some of us know from our down-filled parkas, are extraordinarily good insulation. But all adult birds have feathers, and most migrate south for winter. So what else do chickadees do?

Well, our chickadees are likely to be extra buff in winter! Relatives of Manitoban chickadees have been shown to have chest muscles up to 30% larger in winter than in summer. Chickadees spend little time in continuous flight in their daily activities, so why would these flight muscles get bigger in winter? These larger chest muscles are vital sources of heat production. Chickadees use bursts of shivering to create heat and these muscles do that work, as well as power flight.

A black-capped chickadee perched on a fluffy cattail.

A chickadee searching a cattail for overwintering insect larvae. (Image ©Peter Taylor)

A black-capped chickadee perched on on a snowman shaped seed bird feeder.

A chickadee eating seeds at a backyard feeder. Chickadees switch from a mostly insect diet in summer to include berries and seeds.

Chickadees are also big energy-savers. Like some of us that turn the house thermostat down at night to save energy while we are asleep, chickadees also turn down their thermostats at night using what is called nocturnal hypothermia. Chickadees reduce their body temperatures by as much as 10°C and this can provide a 50% energy savings overnight! One study showed that even reducing body temperature by only 8°C can increase the time to when a chickadee needs to eat to re-fuel by well over an hour. This extra time could spell the difference between overnight survival and death.

Finding a warm roosting spot to stay overnight is also important. Hunkering down in a tree cavity provides a microclimate where heat loss is minimized. Tree cavities can provide an effective temperature difference almost 15°C higher than at an exposed site. This can mean an additional 35% energy saving and greatly increase fasting endurance, the time between required feedings, by seven hours! On very cold days, chickadees spend almost ¾ of their time at their roosting site. This explains why our backyard feeders, just when you might think they would be busiest, seem mysteriously chickadee-free on very cold, windy days.

But when chickadees wake up in the morning and do need to feed, what are they eating and where are they finding it? In summer, chickadees eat mostly insects but in winter, when it is more difficult to find overwintering insect eggs, larvae, and adults, about half of their diet is seeds and berries. Chickadees are opportunistic and readily visit feeders. But they are not reliant on feeders to get through the winter, in part because they store food!

Chickadees are famous for taking seeds and berries and caching them in a hiding spot, and rarely in the same place. This reduces the risk of losing access to food in the future.  On a tough winter day there is a store of available food. And having many, separate places protects this important food source; if all the seeds are hidden at the same spot, perhaps a squirrel, mouse, or other bird might discover them and have a feast, or poor weather might destroy the cache. Having hundreds of individual, safer hiding spots does create a different problem, however. The chickadee needs to remember where to find them all again. Research has shown that chickadees are up to the task, able to recall the locations of hundreds, even thousands, of stored seeds – for up to a month!

A series of three images showing black-capped chickadees landing on a person's hand to take seeds from their outstretched palm.

Chickadees quickly learn to take seeds from patient humans. Will this chickadee eat the seed right away or will it store it to relocate later in the winter when food is scarce? (Images ©Peter Taylor)

Chickadees that rely on stored food have a relatively enlarged part of the brain, the hippocampus, that is important for spatial memory. Although some research initially suggested that the hippocampus increases in size in the fall, potentially to accommodate these memories, more recent work is inconclusive. However, it is no less spectacular that chickadees in harsher northern climates, that would be expected to have a heavier reliance on stored seeds, have a larger hippocampus with more and larger neurons than do chickadees in southern populations. This does suggest that natural selection in a harsher climate has favoured individuals with heritable traits that increase spatial memory.

The next time you see a black-capped chickadee flitting about on a frigid day, perhaps consider all that is going on inside that tiny ball of fluff to get it through the winter. Chickadees do make even our coldest winters cheerier, but there is a lot of serious work going on under that black cap.

If you can’t find a chickadee outside, you can see them in the Boreal Forest and Parklands galleries in the Manitoba Museum. And you can learn about winter adaptations of many kinds of animals throughout the galleries.

[For further, more detailed summaries of chickadee winter biology, see: Pravasudov, V.V. et al. (2015) Environmental influences on spatial memory and the hippocampus in food-caching chickadees.  Comparative Cognition & Behavior Reviews, 10, 25–43.; Olsen, J.R. (2009) Metabolic performance and distribution in black-capped (Poecile atricapillus) and Carolina chickadees (P. carolinensis). PhD Dissertation, The Ohio State University.]

Dr. Randy Mooi

Dr. Randy Mooi

Curator of Zoology

Dr. Mooi received his Ph.D. in zoology from the University of Toronto working on the evolutionary history of coral reef fishes. Following a postdoctoral fellowship in the Division of Fishes of the Smithsonian Institution…
Meet Dr. Randy Mooi

Collecting Today for Tomorrow

Over the past two years, the COVID-19 pandemic has played a central, and disruptive role in all our lives. In the coming decades will COVID become a significant cultural memory, or will we begin to suffer from historic amnesia? Terabytes of information may be deposited in archives around the world. For museums, even ordinary artifacts will become powerful tools to engage visitors.

At the Manitoba Museum, there were no artifacts with which we could relate the story of the influenza pandemic of a century ago. Museums around the world saw the need to begin collecting today for tomorrow. A call was put out for objects that would help mark this event from the Manitoba perspective. To date, over 70 Manitobans have responded to the call.

Over the past months, as I have been integrating these objects and their stories into the permanent collections of the Manitoba Museum, I have been amazed by the breadth and variety of the items. Here’s an initial glimpse our growing COVID-19 collection.

A Unicity Taxi receipt made out on March 13 for $40. The destination address is digitally redacted.

Can you pinpoint the moment that the pandemic became a reality in your life? Leslie Nakonechny’s employer offered to cover her taxi fare so that she could transport her desktop computer as she headed to work from home. Initially she thought the pandemic would blow over in a few weeks and that she could turn in her receipt once they were back to working on-site. As the lockdown continued the receipt became a memento in her wallet.

 

Image: © Manitoba Museum, H9-39-443

Manitoba’s volunteer spirit was evident early in the pandemic. Sewing machines were dusted off and used to create thousands of masks, gowns, and surgical caps to protect health care workers, friends, and family. We all strove to maintain a sense of community during the pandemic. Signs sprang up in windows, on fences, and along walking paths offering messages of encouragement.

Two images side by side. On the left a colourful handmade surgical cap on a hat stand. On the right is a sign on brown cardboard. In the rough shape of Manitoba text reads,

L: Surgical cap from Surgical Caps for Front Line Care Staff. Image: © Manitoba Museum, H9-39-730
R: Sign from Keith Moen, Judy Dyck, Leif & Ruby Moen. Image: © Manitoba Museum, H9-39-348

In early 2020, graphic images of a spiked ball began popping up in the media as stories circulated of a new, potentially dangerous virus. Soon the image was being used in inventive ways. The creativity of Manitobans is evident in many of the donations that use a wide variety of media.

Two images side by side. In the left photo are four crocheted COVID molecules with frowning faces. One ball is pink with grey, and the other three are grey with red. In the right photo is a beaded face mask with red, yellow, white, and black quadrents. Over the red and yellow half, a white wold is stitched, and over the black and white half a red paw print.

L: Crocheted COVID balls created by Karen Matthews. Image: © Manitoba Museum, H9-39-729
R: Beaded mask created by Kayla Eaglestick. Image: © Manitoba Museum, H4-2-621

The artists’ statements that accompany many of the pieces demonstrate how people seek solace in the arts in a time of disruption. Christen Rachul stamped his pottery with a tiny letter ‘Q’ for Quarantine. Gail Wence took up her embroidery needle, Jacqueline Trudeau her paint brush, and Laurie Fischer returned to writing poetry.

New phrases were added to our everyday vocabulary like “social distancing”, “essential workers”, “lockdown”, “pivot”, and “supply-chain”. The impact on the business community is still significant.  Remember hunting for toilet paper?

A still life artwork featuring various fruits and vegetables soaking with a face mask in a kitchen sink.

“Nature Morte en Eau de Javel/Still Life in Water with Javex” by Gérald Dufault. Image: © Manitoba Museum, H9-39-349

A political cartoon of a grocery store shopper pushing a cart past empty shelves labelled "Toilet Paper" and "Hand Sanitizer".

Wall Hanging created by Joan Dupuis-Neal, inspired by a political cartoon by Adam Zyglis. Image: © Manitoba Museum, H9-39-340

Genevieve Delaquis spent her time in line capturing many of the decals that told customers where to stand for their safety. There were also new opportunities. U of W students Alex Kroft and Niels Hurst launched a summer business producing 3-D printed face shields for front-line workers.

Manitoba families endured long periods of separation during lockdowns that robbed them of the opportunity to celebrate life’s milestones. Grandchildren were introduced to family via Zoom. Young people graduated virtually.

A collage created of photographs of "Stand Here" social distancing icons on public floors.

“Stand Here” by Geneviève Delaquis. Image: © Manitoba Museum, H9-39-347

A clear face shield with a blue headband.

3-D printed face shield. Image: © Manitoba Museum, H9-39-716

A red sweatshirt on a mannequin bust. The from of the sweater reads, "Social Distance Club".

Sweatshirt worn by Twila Fillion who was a first-time mother during the lockdown. Image: © Manitoba Museum, H9-39-287

With the stores closed for all but essential items, Donalda Johnson created pom poms out of plastic grocery bags and decorated cars for a friend’s retirement parade. 96-year-old Helen Rempel quietly crocheted Christmas ornaments for each of her 26 immediate family members who would not be gathering in person.

COVID themed Christmas ornaments including a gingerbread person wearing a face mask, and pom-poms made of plastic grocery bags.

Some of the most impactful artifacts were created by children.  Many of the items illustrate the efforts of parents, caregivers, and teachers to help young Manitobans cope with the upheaval in their lives. For some, letter writing and drawing allowed them reach out to the community.

Grade 12 student Kendra Radey wrote and illustrated Robby’s Life Lesson to teach children about COVID safety.

Two hand drawn notes. On the left a child's note reads, "Brenley after the virus do you want to play". On the right, a hand drawn comic shows a person in a boat approaching a lake monster who says, "Ach ya bloody idiot! Don't you know you have to stay two bloody meters?!" The comic is titled "The lock-down monster".

L: Note written by 5 year old Charlotte Oldfield. Image: © Manitoba Museum, H9-39-450
R: Window sign by Mia Danyluk. Image: © Manitoba Museum, H9-39-466

Pages from a hand-drawn book. On the right the page has a drawing of a cat and a dog wearing white lab coats and stethoscopes. In large letters above their heads it says, "We're here to help". Printed text at the bottom reads, "Thousands of people around the world were getting sick and many people needed to be taken to the hospital." The page on the left show paws washing with soap and water in a sink. Printed text along the top reads, "Robby and his family continued to worry, but especially continued to follow the rules and washed their hands whenever they could."

Robby’s Life Lesson written and illustrated by Kendra Radey. Image: © Manitoba Museum, H9-39-692

Public Health officials and politicians tell us we are moving into a ‘new normal’. It is hard to predict when the Museum will be ready to create a retrospective exhibit about the pandemic. As I write this blog, I am aware that I have omitted many of donations. But in the years to come, the COVID-19 collection may be used in museum exhibits and programs or by students, historians, writers, film makers, and others to tell our story.

Nancy Anderson

Nancy Anderson

Collections Management Specialist – Human History

Nancy Anderson holds a B.A. (Hons) in History from the University of Winnipeg, and received her M.A. in Canadian Social History jointly from the University of Winnipeg and University of Manitoba. She has over 30 years experience…
Meet Nancy Anderson

Pinning Insects for the Museum’s Collections

As part of the Manitoba Museum’s entomology collection, we house over 60,000 pinned insects, true bugs, and arachnids. In addition, there are a further ~3000 invertebrates preserved in alcohol, also referred to as “wet” specimens. While the majority of the collection are pinned insects in their adult form, there are also examples of the many and varied life stages that occur prior to the adult form, including egg, larval, nymph, and pupal forms. It is important that a scientific collection contain representatives of these life stages (including males and females of each), as they can and do look very different within any given species.

The Manitoba Museum is a research and collections-based museum whose mandate is to collect and preserve both the natural and human histories of the province for present and future generations. Curators conduct research throughout the province in their respective fields of expertise. Specimens are collected during field seasons and are brought to the museum for preparation and subsequent study. Before specimens can be handled and made accessible for study, they must be prepared to maintain their long-term preservation. Fossils need to be exposed from their matrix, plants need to be dried and mounted, and birds and mammals transformed into skins and skeletons. Insects too, must undergo a preparation process in order to stabilize them for storage, and to make them safer to handle. This is where skill meets a bit of art, and sometimes a little luck!

Open storage drawers  containing many neatly organized pinned butterflies.

The Manitoba Museum’s entomology collection represents most of all the very diverse groups and species that occur in Manitoba. Image: © Manitoba Museum

A small pile of winged ants on a white surface next to a hand-written note reading, "Collected by R. Mooi / Sept 10/2020 / Winnipeg - on wall".

It all starts here – Dr. Randy Mooi, Curator of Zoology, has brought in some dead carpenter ants with collection information. Image: © Manitoba Museum

A Confusing Bumblebee specimen hanging upside-down from a the pink and yellow flower of a Darkthroat Shootingstar plant model.

Once specimens are carefully collected and brought to the museum, a decision must be made on how a particular insect will be preserved. Part of this decision is based on what type of insect (invertebrate) it is, but also how we may want use the specimen afterward. Typically, insect specimens for scientific use are pinned in a traditional manner according to international museum standards where all parts are positioned symmetrically, and anatomy used for identifying characteristics are not obscured. If a specimen will be used for educational purposes, or included in an exhibition in one of our galleries, the pinning is slightly different so that a more life-like pose is achieved. Certain groups or forms, such as a caterpillar (larva), or other worm-like animals, would simply shrivel up if it was pinned, and would not be very recognizable. These types preserve better as a whole body stored in a vial with alcohol as a wet specimen.

 

I pinned this Confusing Bumblebee (Bombus perplexus) in a life-like pose, as it would naturally be, collecting nectar. Our Diorama Specialist, Deborah Thompson then attached it to a Darkthroat Shootingstar plant model she expertly made. This pair is now installed in the new Prairies Gallery. Image: © Manitoba Museum

Three plastic cups placed inside a larger plastic container with a snap-lid. In each of the plastic cups are a few insect specimens.

When adult insects are collected, they typically become very dry and brittle by the time they are brought into the museum. Handling them is difficult without causing damage, as tiny legs and antennae can easily break off. In order to manipulate and pin them in the correct position, they must first be re-hydrated into a softened state. Plastic containers with good sealing lids are used as a re-hydrating environment. The container is filled with a couple of centimetres of distilled water with some alcohol added to guard against any mould growth. Insect specimens are then placed on top of a piece of rigid foam which is floated within the container.  After a few days, the specimens are checked to see if they are pliable enough for the wings and legs to easily be moved. Small flies could be ready in a few days, large beetles with thick exoskeletons and strong ligaments, could take several days.

 

Insects are placed in a re-hydrating container to soften, and make them pliable for the pinning process. Image: © Manitoba Museum

Once in a softened state, the insect is ready for the pinning process. The insect is gently held while a main pin is inserted through the thorax, just below the base of the forewings, and placed perpendicular to the plane of the body. Special entomology pins are used as they are made of metals that will not corrode when in contact with the insect. They come in different gauges to be used with the varying sizes of insects. A large insect, such as a butterfly, will require a thicker pin for sturdiness, and a very thin gauge pin would be used for smaller insects. Anything even smaller, or extremely fragile is “pointed”. That is, where an insect is too small to have a pin inserted, it is instead carefully glued to the ‘point’ of a small triangle of archival card stock and the main pin is then inserted through the point. This main pin is now the only way the specimen can safely be handled.

A monarch butterfly specimen positioned on a pinning board with strips of glassine and straight pins. In the background are a magnifying glass and various pinned insects in storage containers.

A pinning board is used to properly position a large butterfly specimen. Image: © Manitoba Museum

A close up on a fly specimen held in place with several straight pins.

Numerous support pins are used to position the legs and wings of this fly specimen. Image: © Manitoba Museum

When the main pin has been properly placed, the legs, wings, and antennae must then be positioned. A pinning board made of soft balsa wood or dense foam is used for specimens with large wings such as butterflies, moths, dragonflies, or grasshoppers. It has a trough where the body can be lowered, and the wings can then be spread over the flat surfaces of the boards on either side and supported. Spreading the wings properly is a bit like the game “Twister” for the fingers. Insect wings are incredibly fragile, so carefully coaxing them away from the insect’s body without damaging them takes some practice. Add to that, the wings of Lepidopterans (butterflies and moths) are covered in fine, microscopic scales that aid in flight, waterproofing, and coloration that will break off, like dust, if touched. Forceps are gently used to spread the forewing out from the body on one side, and while holding that in place, the hind wing on the same side, is brought out and positioned. Once both wings on one side are in the proper position, a strip of glassine is placed gently over them. Glassine is a smooth translucent paper that will not abrade the scales of the wings. Pins are then inserted just through the paper and into the underlying pinning board to hold everything in place. This process is then repeated with the wings on the other side. The antennae and legs are then moved into place, slightly away from the body, and support pins are inserted into the board to hold them there. This is done so that the legs do not obscure any important identifying characteristics.

After the insect is pinned into the correct position, it is left to dry. Depending on the size of the insect, it may dry in a few days, larger beetles and dragonflies could take over a week. When it is dried, the positioning pins are very carefully removed and it is now ready for data labels to be attached on the main pin below the specimen. Labels are printed on archival paper and contain all the pertinent data about the specimen such as the identification, who collected the specimen, and when and where it was collected. This data is also entered into our collections management database. As with all specimens in our collections, it is extremely important to keep each specimen together with its data. The data proves that this exact species occurred in this time and place – it’s recorded proof of that biodiversity snapshot of that time. If the data labels ever became separated from its specimen, its intrinsic scientific value is greatly diminished, or completely lost.

Looking down a corridor at a glass display wall of pinned insects.

The vast diversity of insects of Manitoba’s Boreal Forest is showcased in the Boreal Gallery and contains over 700 invertebrates. Image: © Manitoba Museum/Ian McCausland

Museum collections all over the world apply these same international techniques and standards when preparing and storing specimens for study. This aids in maintaining consistency between museum collections, and have changed very little over the past several hundred years.

Two images side by side. On the left is a black and white photo of rows of pinned insects. On the is a colour photograph of similar insects pinned in a similar fashion.

Left: Sir Joseph Banks Insect Collection (1743-1820) Image: © The Trustees of the Natural History Museum, London. Licensed under the Open Government Licence

Right: Present-day insect collection at the Manitoba Museum. Image: © Manitoba Museum

Janis Klapecki

Janis Klapecki

Collections Management Specialist – Natural History

Janis Klapecki obtained a B.Sc. from the University of Manitoba, specializing in Zoology and Botany. She also holds a certificate in Managing Natural History Collections from the University of Victoria, BC. Janis has over 20 years experience…
Meet Janis Klapecki

The Weird World of Plant Sex

A small plant growing from a wooded ground. The plant is topped by a flower with large, drooping pink petals. Two large leaves encircle the stem at the base.

On the surface, plant sex seems pretty simple. Birds and bees transfer pollen from one flower to another and voila: seeds are produced. But, like most things in life, plant reproduction is much more complicated than initially meets the eye.

Finding a Mate

For starters, plants are not like mammals when it comes to gender. Only about 5-6% of all flowering plant species are dioecious, that is, having separate “males” (i.e. producing only sperm-containing pollen in stamens) and “females” (i.e. producing only eggs in pistils). The most familiar dioecious plants to most people are Manitoba Maples (Acer negundo; left, below), willows (Salix spp.) and marijuana (Cannabis sativa). However, the vast majority of plant species are monoecious, producing both sperm AND eggs in a single plant. This strategy makes sense for organisms that can’t move around to find a mate. When you make both sperm and eggs, your possible number of romantic encounters doubles. Most of the common garden flowers that we love, such as lilies, roses, tulips and orchids, are monoecious.

A close-up of a tree branch with green leaves and elongated green winged seeds.

Some plant species, like Manitoba Maple (Acer negundo) have separate male and female trees. This tree is female, and has produced winged seeds.
Image: © Manitoba Museum

Photo looking down at a Western Red Lily in the grass. The Orange-red flower has six petals, with a pistil in the centre, surrounded by six small stamens.

The flowers of Western Red Lily (Lilium philadelphicum) have a single pistil in the center, which contains the eggs, and six sperm-producing stamens surrounding it.
Image: © Manitoba Museum

A mid-range photo of a White Spruce tree. The nearest branch has many brown cones on it.

The female cones of White Spruce (Picea glauca) are usually near the top of the tree and the male cones near the bottom, to prevent self-fertilization.
Image: © Manitoba Museum

Some species are cosexual, with both stamens and pistils in the same flower (e.g. the Western Red Lily, Lilium philadelphicum; centre, above). Other species produce separate male and female cones or flowers on different parts of the same plant, or at different times of the year. For example, White Spruce (Picea glauca. Right, above) trees produce male cones at the bottom of the tree and female cones at the top. Alder (Alnus spp.) shrubs typically produce their male flowers first, and then their female flowers afterwards. The separation of pollen- and egg-production in either space or time, helps prevent self-pollination and inbreeding.

Two pressed and preserved branches of Four-wing Saltbush. The two branches are laid falt on a large sheet of white paper, with specimen details typed at the bottom.

However, even plants with separate “males” and “females” may be able to change sex in a pinch. Imagine what would happen if all the plants in a certain area happened to be female. No babies would be made at all! Scientists have described instances of plants switching from making female flowers to male flowers in response to environmental conditions (Freeman et al. 1980). Light levels, soil fertility and temperature are some of the factors known to alter floral sex in certain species (Varga and Kyto viita 2016; Freeman et al. 1980). When resources are scarce or growing conditions poor, making sperm is less energy-intensive than making eggs and seeds. Thus, for example, a dioecious tree may produce male flowers when it is young and short, and female flowers when it is older and taller, as larger trees capture more light.

 

Left: Four-wing Saltbush (Atriplex canescens) plants have been documented as changing gender after particularly stressful weather events, like cold temperatures and drought (Freeman et al. 1984). Image: © Manitoba Museum, 29685

Going Solo

But we have only scratched the surface of plant weirdness. Sometimes, flowers will not receive any pollen.  This means that all the energy invested in egg production will go to waste. In the name of efficiency, some species, like sunflowers (Helianthus spp.), self-pollinate by curling parts of their pistils around their stamens. In other species, a process called agamospermy results in the egg maturing into a seed without being pollinated at all. It’s kind of like a virgin birth, with the offspring being genetically identical to the parent plant.

Other species, often those in cold, alpine or arctic climates, don’t even bother producing seeds; they just make tiny clones of themselves called bulbils. This is a kind of asexual reproduction. Once the bulbil is large enough, it detaches, perhaps when a stiff breeze is blowing, and grows into a new plant. That would be like growing a tiny version of yourself on the outside of your belly (like a giant pimple). Then one day it would just fall off and become a new person that looks exactly like you. Native plants like Bulb-bearing Water-hemlock (Cicuta bulbifera) and Viviparous Sheep’s Fescue (Festuca viviparoidea), and house plants like Kalanchoe (Kalanchoe spp.) use this technique to reproduce.

Plants also engage in vegetative reproduction. This is when plant parts, like leaves or stems, that become detached go on to grow roots and become new plants. Many cacti and other succulents, can do this: cactus “pads” (actually swollen stems) that become detached grow into new plants under the right conditions. For humans, this would be like removing a leg, and then having it grow into a clone of yourself. The “parent” would then grow a new leg to replace what was lost, kind of like what the Marvel Cinematic Universe character Deadpool did in the movie sequel (his whole body regrew from his head!).

A ywllow sunflower in front of a blue sky with faint whisps of white cloud. Near the centre of the sunflower are two small, black and yellow striped pollinator insects.

Sunflowers (Helianthus annuus) can pollinate their own seeds if they have to, but production is lower and the offspring are not as genetically diverse. Image: © Manitoba Museum

Pads of several low-growing Plains Prickly-pear Cactus growing among grass and brush. A yellow flower grows from one of the pads.

Cactus pads of Plains Prickly-pear Cactus (Opuntia polyacantha) that become detached can grow into new plants. Image: © Manitoba Museum

Plants also engage in vegetative reproduction. This is when plant parts, like leaves or stems, that become detached go on to grow roots and become new plants. Many cacti and other succulents, can do this: cactus “pads” (actually swollen stems) that become detached grow into new plants under the right conditions. For humans, this would be like removing a leg, and then having it grow into a clone of yourself. The “parent” would then grow a new leg to replace what was lost, kind of like what the Marvel Cinematic Universe character Deadpool did in the movie sequel (his whole body regrew from his head!).

Plants have had to evolve some ingenious ways to ensure their reproductive success because they are rooted in one spot. Imagine how much stranger our lives would be if humans reproduced like plants.

 

References

Freeman, D.C., K.T. Harper, and El L. Charnov. 1980. Sex change in plants: old and new observations and new hypotheses. Oecologia, 47: 222-232.

Freeman, D.C., McArthur, E.D., and K.T. Harper. 1984. The adaptive significance of sexual lability in plants using Atriplex canescens as a principal example. Annals of the Missouri Botanical Garden, 71: 265-277.

S. Varga, M.-M. Kyto viita. 2016. Light availability affects sex lability in a gynodioecious plant. American Journal of Botany, 103: 1928-1936.

Dr. Diana Bizecki Robson

Dr. Diana Bizecki Robson

Curator of Botany

Dr. Bizecki Robson obtained a Master’s Degree in Plant Ecology at the University of Saskatchewan studying rare plants of the mixed grass prairies. After working as an environmental consultant and sessional lecturer…
Meet Dr. Bizecki Robson

Dressed to Impress: The Art of Fitting Historic Textiles 

By Carolyn Sirett, Conservator, and Lee-Ann Blase, Conservation Volunteer 

We have all seen those lifeless mannequins looking sad and lonely in a store’s window front, longing for the next wardrobe change of a new season. Here at the Manitoba Museum we like to give our mannequins a bit more attention to detail compared to their retail cousins, what some might call, a full spa treatment! 

Humans are uniquely different from one another, and our clothing choices are also uniquely different, from size to shape to style. These human qualities are well represented in our historic textile collection, and when displaying these garments, every detail is assessed to ensure its preservation. 

Dressing a museum mannequin is the opposite of fitting a living person. Instead of fitting the clothes to the person, the mannequin is made to fit the clothes. Many of the mannequins we use at the Museum have been custom made by our conservation department using conservation-quality materials. We first begin by measuring the waist, chest, neck, arm, and leg lengths. The mannequin form is then either trimmed down, or padded out with polyester fibre to reach the required dimensions to properly support the clothing. 

 

 

Once the basic form is made and covered with a suitable fabric, we begin to dress the mannequin. This is where historic photographs are useful to see how the outfits were worn, and to bring a little more personality to our frozen foam bodies. Edith Rogers’ cotton-crocheted tea gown, displayed in the Winnipeg Gallery, is a good example of using research to determine the best fit. A tea gown bridges the gap between dress and undress as a corset is not worn with it. Research shows only an upper-class woman could have afforded this type of dress among their ball, dinner, reception, and afternoon dresses. 

A similar style dress from a 1913 Eaton’s of Toronto catalogue was used as a reference when building the mannequin for the Edith Rogers dress.

Image: Eaton’s Spring and Summer Catalogue, No. 106, 1913 

When this dress was chosen for display it first needed to be stabilized in the conservation lab with a fine net in the bodice and a few minor tear repairs. In order to make this garment appear as it would, we added a petticoat from the Museum’s collection to help support the textile. With the petticoat slipped over the custom form, then carefully sliding the dress on and using acid-free tissue to fill any gaps – voila – the tea gown was ready for exhibition. 

The last part of dressing a mannequin is in the finer details. The arms, hands, legs, waist, and head all need to be positioned. For the modern Pow Wow dancer in the renewed Prairies Gallery, the Curator wanted to evoke the idea that the mannequin is dancing, to look as if the mannequin is in-motion. When trying to imply movement, it can be difficult to balance the mannequin as a structure, but also to balance the preservation of the artifacts that are being displayed. 

On your next visit to the Museum, hopefully you are able to see some of these fabulously fitted forms. 

Conservator Carolyn Sirett adjusts the headdress of Pow Wow regalia on a mannequin in the conservation lab.

Making final adjustments to the mannequin in the conservation laboratory.

Image: © Manitoba Museum 

Intricate Pow Wow regalia on a mannequin posed to look as though it is mid-dance in a display case in the Prairies Gallery.

One of 22 custom mannequins created by Conservator Carolyn Sirett and installed in the new Prairies Gallery.

Image: © Manitoba Museum/Ian McCausland 

Carolyn Sirett

Meet the Conservation Team

Carolyn Sirett

Senior Conservator

Carolyn Sirett received her B.A. in Anthropology from the University of Manitoba, Diploma in Cultural Resource Management from the University of Victoria, and Diploma in Collections Conservation and Management…
Meet Carolyn Sirett

Comet Leonard visible in morning

At the edge of the solar system, there is a cloud of small, icy objects that are left over from the formation of the solar system. They’re too small to see from Earth, and much too far to visit, and yet they are like a deep-freezer full of evidence of how our solar system formed, preserved in the cold of deep space. Luckily, every so often one of these icy bodies gets bumped or deflected into a new orbit that carries it towards the inner solar system. Right now, you can see one of these tiny bodies in the sky with nothing more than a pair of household binoculars.

The object in questions is called Comet 2021 A1 (Leonard) – it was the first comet discovered in 2021, by Greg Leonard, a senior research specialist working at the Catalina Sky Survey at the University of Arizona. Catalina scans the sky looking for new things, so it finds a lot of comets, and this isn’t the first Comet Leonard, either. However, this comet Leonard may be bright enough to see without a telescope later this month.

A star chart outlining the trajectory of Comet Leonard from December 2 to 7, 2021.

How Do I Find It?

The comet is currently sitting in the morning sky between the Big Dipper and the constellation Bootes the Herdsman, and it has been seen in binoculars from a dark location (read: outside the city, without any nearby lights or the Moon to interfere). You can use the detailed chart below to zero in on where the comet will be each night – its orbit carries it around the sun fairly quickly and it’s in a different spot every night.

What Will I See?

If you’re using binoculars, you will probably see a faint round ball of grey light, perhaps with the hint of a tail sticking upwards. Try not looking directly at the comet, but direct your eyes slightly away and get the more sensitive parts of your retina involved – this technique of averted vision is key in seeing fainter objects.

If you have a DSLR camera, try sticking it on a tripod and taking some time exposures of the sky – use ISO of 800 or higher and exposure times of 1 second up to about 10 seconds, and see what you get. (You might get something with other kinds of cameras or cell phones, but probably not.)

Why Bother?

I’m not gonna lie, seeing a faint fuzzy ball in the sky isn’t going to make you jump up and down because of the physical appearance of the object. It’s a challenging observation of an object that humans may never see again, and a chance to see an object that is older than anything on our planet. Plus, comets have a way of being unpredictable, sometimes surging in brightness unexpectedly or even breaking apart into multiple pieces. You never know what you’re going to see.

Finding a comet with binoculars is something we can’t do very often – maybe once a year or even less. It’s also perfect practice for using a telescope – many of he skills you develop finding Comet Leonard will help you out if you aspire to use a telescope at some point. But for me, the chance to see such a fleeting celestial visitor is a magical experience, one that really makes me feel connected with the cosmos.

Now, all we need are some clear skies…

Scott Young

Scott Young

Planetarium Astronomer

Scott is the Planetarium Astronomer at the Manitoba Museum, developing astronomy and science programs. He has been an informal science educator for thirty years, working in the planetarium and science centre field both at The Manitoba Museum and also at the Alice G. Wallace Planetarium in Fitchburg, Massachusetts. Scott is an active amateur astronomer and a past-President of the Royal Astronomical Society of Canada.

Building Blocks of the Plains: A Fieldstone Wall in the Prairies Gallery 

By Dr. Graham Young, past Curator of Palaeontology & Geology

 

Beginning in 2012, The Museum’s curators worked together to plan exhibits for the Bringing Our Stories Forward project (BOSF). As we travelled around the grasslands region to prepare ideas for our new Prairies Gallery, we developed a list of topics that would be essential for a representation of this region. We rapidly agreed on some things that had to go into the Gallery: prairie vegetation, the importance of wind, Indigenous prehistory (and most particularly mound-building cultures), and several other topics. One of these was fieldstone. 

 

Photograph of the exterior wall of an abandoned stone house with an open window frame and a worn shingled roof.

A wall of the Brockinton house shows some of the geological variety of fieldstone types. 

What is fieldstone, and why did we think it was essential? 

When European settlers arrived on the prairies, they wanted to build permanent houses and other buildings. They were now in a region where there were almost no trees away from the river valleys, so material for wooden houses could be scarce. Many settlers came from parts of Europe where houses were built from stone that was quarried from solid bedrock, but on the Manitoba prairie the bedrock was either buried far below the land surface, or it was soft Cretaceous shale that was useless as a building stone. 

There was however, a building stone resource that was readily available: loose fieldstone boulders, which lay on the land surface or could be readily found by digging near riverbanks. Fieldstone is a mixture of many kinds of stone. These stones formed as bedrock at  different times, under varied conditions, and include igneous, metamorphic, and sedimentary rock types. 

A church building built of varied fieldstone with a distinctive black and red steeple.

Some fieldstone structures in southwestern Manitoba are much grander than the Brockinton house. These photos show St. Paul’s United Church in Boissevain, built as a Methodist church in 1893. 

Looking up at the wall of a fieldstone building with two windows side by side. At the bottom of the frame, above the doorway, a datestone reads “Methodist Church / 1893”.

Doorway of St. Paul’s United Church in Boissevain.

Like the settlers, fieldstone had immigrated to the prairies. During the Ice Age (Pleistocene Epoch), huge glaciers covered Manitoba. Glacial ice flowed southward, pulling blocks of stone out of solid bedrock. Blocks (glacial erratics), left behind when the ice melted, are used as fieldstone. Most fieldstone thus originated far to the north of where it is found today. 

Map graphic of Manitoba showing where in the province stones dating from certain ages came from to arrive at Bockington House in the south-western corner of the province.

Most fieldstone in southwest Manitoba comes from bedrock far to the north. This stone dates from the Precambrian (over 541 million years ago) and Paleozoic (541–252 million years ago) ages. In the Ice Age (2.6 million–10,000 years ago), the stones were picked up by glaciers and moved great distances.

Looking at a sandy bank with stones embedded in it. A short spade stands propped against the tall bank.

Fieldstone occurs with other sediment in glacial deposits, such as here in the Assiniboine River valley near St-Lazare. 

Close-up looking at the joints between stones in a fieldstone wall.

Fieldstone blocks of variable size are mortared together in a wall of the Brockinton house. 

Since fieldstone was a distinctive natural material seen across many parts of the prairies, and since it was used by settlers when they built many of the early buildings, it was clear to us that the fieldstone story should be included in our Prairies Gallery. We already planned to build an exhibit about the Brockinton National Historic site, a significant precontact bison kill site in the Souris Valley south of Melita, so it made sense that we also create an adjacent exhibit that would represent a wall of the Brockinton house, a late 19th century structure that sits at the top of the slope above the archaeological site. 

But how could we build this exhibit? Stone is really dense, and a mass of solid stone would have been far too heavy to be supported by the floor in our gallery space. Stone is also not really a topic that would have been suited to an animated video like our beautiful Prairies Mural Wall, and a flat panel display would have been just that: flat. We needed some way to allow visitors to observe and touch the genuine stone, in a setting that imitated a real fieldstone wall.  

Fortunately, in our various travels around southern Manitoba we had met Todd Braun, a stonemason who works in the Altona area. By consulting with Todd and with our exhibit design team, a plan took form: a frame would be fabricated from steel clad in plywood, and Todd would prepare the stones to attach to that frame, reducing their weight by slicing them thin. 

Large selection of blocks of fieldstone laid out in a cleared area on snowy ground.

These are some of the fieldstone blocks that had been chosen by Todd Braun as possible raw material for our fieldstone wall. 

A selection of fieldstone blocks laid out together in a general square shape.

The selected stones were laid out so that we could see how they would fit into the wall. 

A 3-D metal frame in a standing U shape in a workspace.

A steel framework was fabricated in three sections to serve as a “skeleton” for the wall structure. 

Todd and I selected stones to represent the great variety of fieldstone seen in southwestern Manitoba. Many of these came from boulders and cobbles that Todd had found during his visits to various gravel pits. A few were rocks that we found together, and in one or two instances I went to other geologists to request examples of very particular rock types.

Once we had agreed on the stones to be used, Todd prepared them using traditional techniques, breaking each rock with a hammer until it had a blocky shape. These blocks were laid out in their approximate relative positions for the wall. After a fitted layout was achieved, Todd patiently took each block and trimmed it with a saw so that the visible surface was effectively a “veneer” with only a few centimetres of thickness. These veneers were then attached to the steel and plywood frame using adhesives and metal hardware, and the space between them was covered in traditional mortar. The “corner stones” were a particular challenge, since they had to be cut in such a way that they would look like solid three dimensional blocks once the wall was assembled. 

Thinned blocks of fieldstone being laid out on a section of metal frame.

The wall sections were tipped on their side to allow the sliced stones to be placed. Note how the corner stones have been cut so that they will look like three-dimensional blocks. 

View underneath the 3-D metal frame, now lying flat with thinned fieldstone blocks placed on the surface. Inside it is hollow other than support beams.

This view from the underside shows the substantial steel structure that underlies the wall. 

The rectangular base of the frame now with fieldstone blocks attached, being lifted with chains by a tractor.

The completed base section of the wall is light enough to be lifted by Todd’s tractor. 

To allow the wall to be assembled in Todd’s workshop prior to its installation in our gallery, the frame was actually built in three sections. This made each piece light enough to be readily moved, and small enough to fit through the smallest doorway between the Museum’s loading dock and our new Prairies Gallery. Very early one morning, Todd arrived at the Museum with the completed wall sections on his trailer. These were hoisted into the loading dock, and rolled through the Museum to the wall’s permanent gallery location. Todd and our construction team had created an ingenious hoist system that would allow each upper wall section to be lifted into position on the base section. Once the wall sections were in place, they were bolted together, and Todd covered the joins with fresh mortar. 

 

Two “pillars” of frame with fieldstone attached to the exterior being moved into place in the new Prairies Gallery with a hoist and girder system.

In the Museum, the upper wall sections were attached to a hoist and girder system so that the base section could be wheeled into place beneath them. 

Two individuals pump up pallet jacks with the rectangular base of the metal frame and fieldstone wall on them.

The base section was rolled in on two pallet jacks. 

Three individuals maneuver the rectanulgar base of the metal frame and fieldstone wall under the two side pillars, which are hanging in place on a joist and girder system, using two pallet jacks.

The finished wall looks very much like the walls you can see at Brockinton House and on other buildings in southwest Manitoba, and it beautifully demonstrates both fieldstone construction and the geological variety of this fascinating material. As is the case for some other Museum exhibits, there is no evidence of the incredibly complicated and lengthy development and construction process that allowed this structure to “look like the real thing.” 

The constructed fieldstone wall in the new Prairies Gallery next to descriptive exhibit panels and other displays.

The finished wall is surrounded by interpretive materials, telling the fieldstone story. 

Who Turned Out the Light?

With the days growing ever shorter, I find myself thinking about light and how we tend to take for granted the hard work that plants do, harnessing the energy from the sun. Photosynthesis is the beginning of most food chains on earth, the exceptions being bacteria (Archaea) that can obtain energy from inorganic chemicals like sulphur and ammonia. But since we don’t eat bacterial ooze for breakfast, this process remains relatively unimportant to humans. Photosynthesis is what gives us life!

Looking down at three small plants growing from the ground. Each has several green leaves, and a single white four-petaled flower.

Photosynthesis is a process where plants, and plant-like aquatic creatures such as phytoplankton, use energy from the sun (photons) to combine water (H2O) with carbon dioxide (CO2) from the air, to make sugar (C6H12O6). Oxygen (O2) is a “waste” product of photosynthesis. This reaction takes place in special green-coloured plant cells called chloroplasts. Plants and phytoplankton use the sugar they make to grow and reproduce themselves.

 

Plants like Bunchberry (Cornus canadensis) engage in photosynthesis, one of the most important chemical reactions on earth. © Manitoba Museum

Animals and fungi are incapable of photosynthesizing; they have to “eat” plants to stay alive. Even meat-eaters (i.e. carnivores) are ultimately dependent on plants for their survival, because they eat animals that eat plants or phytoplankton. Further, the oxygen that plants produce is also required by animals to breathe. Thus, we depend on plants for our very lives.

Some northern plants are “evergreen”, which lets them begin photosynthesizing as soon as the ground thaws in spring. In contrast, deciduous plants have to grow a whole new set of leaves before they can begin photosynthesizing again. As there is almost continual sunlight over the summer months in the far north, tundra plants can photosynthesize almost non-stop during this time. They must quickly produce enough sugar over the short summer to stay alive, in a dormant state, over the long, dark winter.

A bumblebee crawling on the centre of a yellow flower.

All animals, including insects like this bumblebee (Bombus sp.) on a sunflower (Helianthus sp.), depend on plants for food. © Manitoba Museum

A patch of low-growing purple flowers with occasional white flowers interspersed among them.

The evergreen Purple Saxifrage (Saxifraga oppositifolia), begins photosynthesizing as soon as it can, even when there is still snow on the ground. © Manitoba Museum

Close up of a white flower with a yellow centre.

One way that plants can increase the amount of light they receive is by slowly moving in response to the direction of the sun (i.e. heliotropism). Like tiny solar ovens, species such as Entire-leaved Mountain Avens (Dryas integrifolia), move their flowers each day so that they continually face the sun. As a result, the flower temperature is several degrees warmer than that of the air. This improves seed production, in part, because pollinating insects are more likely to visit warmer flowers. In other plant species (e.g. sunflowers or Helianthus) it is the leaves that rotate to be perpendicular to the sun, increasing the amount of light for photosynthesis.

Many ancient human societies in the northern hemisphere held religious gatherings or celebrations around the winter solstice (typically Dec. 21 or 22) because even though they knew many cold days were still ahead, the amount of sunlight would begin to increase again. Evergreen plants, like spruces, pines, mistletoes and holly, were sometimes part of these events, because they are the plants that refuse to wither when the light begins to fade.

 

The umbrella-shape of the flowers of Entire-leaved Mountain Avens (Dryas integrifolia), concentrates the sun’s rays on the young seeds developing in the center.© David Rudkin

Dr. Diana Bizecki Robson

Dr. Diana Bizecki Robson

Curator of Botany

Dr. Bizecki Robson obtained a Master’s Degree in Plant Ecology at the University of Saskatchewan studying rare plants of the mixed grass prairies. After working as an environmental consultant and sessional lecturer…
Meet Dr. Bizecki Robson

William Beal, Renaissance Man of the North 

Black and white studio portrait of a man in a dark suit and tie in front of a neutral draping backdrop.

This last summer the Museum installed a new permanent exhibit about William Beal in our Parklands Gallery. Beal was a settler from Minneapolis who arrived in the Swan River Valley north of Duck Mountain in 1906, and homesteaded in the Big Woody district.

William Sylvester Alpheus Beal (1874-1968) is best known now as a photographer, and left behind dozens of high quality images of his fellow settlers in the region. But Beal was much more than a photographer – he was the “Renaissance Man” of Swan River, a true intellectual. Besides having his own photo studio, he was a professional steam engineer and oversaw engines at various logging operations.

 

Image: William Beal, self-portrait, Swan River, Manitoba, circa 1918.

 

 

He was also an amateur astronomer and constructed his own telescope; he formed a literary and theatrical society, and organized musical recitals; he organized and served on the local school board for 37 years; he was an assistant to the local doctor, providing a type of vaccine injection to locals during the 1918 Influenza pandemic; he was an electrician and fine carpenter; and he was renowned for owning a vast library. Evidently the only thing that didn’t interest him was farming, but he nevertheless cleared land, harvested crops, and received his full homestead grant.

Black Settlers in Manitoba

The racism William Beal experienced in the United States denied him his chance of becoming a medical doctor. Though he formed close friendships in the Big Woody district, he was the only Black man in the area, and experienced racism there as well. 

In the early 1900s the Canadian government actively prevented immigration of Black people to Canada, through misinformation campaigns, bribery of officials, and arbitrary requirements not asked of white immigrants. In 1911, 200 Black farmers from Oklahoma were finally able to enter Manitoba at Emerson, after a rigorous and delayed inspection. It’s not known what hurdles Beal faced when entering Manitoba back in 1906, but after he settled in Big Woody district, he was there to stay, and contributed so much to the local community. He passed away in 1968 at the age of 94. 

Photograph of a vintage box camera and various bottles of photography developing chemicals.

William Beal used a camera like this one to photograph the people of Swan River Valley. He developed the 5 X 7 inch glass negatives in his own studio using chemical mixtures. Eastman Kodak camera, circa 1903, and chemical bottles. H9-5-716A. Copyright Manitoba Museum. 

Black and white vintage photograph of a couple in front of a makeshift hanging backdrop. The moustachioed man is sitting, wearing a dark suit and tie. At his shoulder stands a woman wearing a button-up blouse and long skirt. Both have serious expressions and are looking slightly out of frame to their left.

Abe and Dora Hanson, Big Woody district, Swan River MB c. 1917. Photo by William Beal. 

A family on a wooden porch in front the door of a building. A man sits on a chair with a toddler on his knee. Beside him stands a woman holding a smiling baby. A rifle is propped against the doorframe beside them.

Percy and Emma Potten with children, Evelyn and Bert, Big Woody district, Swan River MB 1915. Photo by William Beal.

A man and a woman sitting side by side in front of a make-shift hanign backdrop. The man is bundled up, wearing a dark jacket and neck kerchief. The woman is wearing a light-coloured top and apron with a lightly-patterned skirt and a neck kerchief. Both are looking directly into the camera with serious expressions.

Roy and Hilda Sedore, Big Woody district, Swan River MB c. 1916. Photo by William Beal.

Billy: The Life and Photography of William S. A. Beal, was published in 1988 by Leigh Hambly and Rob Barrows, a former Manitoba Museum photographer who grew up in the Swan River Valley. It features detailed research on Beal’s life and many of his photographs.

Dr. Roland Sawatzky

Dr. Roland Sawatzky

Curator of History

Roland Sawatzky joined The Manitoba Museum in 2011. He received his B.A. in Anthropology from the University of Winnipeg, M.A. in Anthropology from the University of South Carolina, and Ph.D. in Archaeology…
Meet Dr. Roland Sawatzky

The Enduring Diorama – Museum Pronghorns Still Going Strong After 50+ Years

The Museum opened our newly renovated Prairies Gallery just last spring with spectacular new exhibits on the intriguing and engaging natural and human history of southern Manitoba. The addition of ground squirrels and their burrows, a riverbank bison bone bed, a homesteader stone house, an old school room, and hundreds of new specimens and artifacts, along with life-sized animations, prairie soundscapes, and feature videos provide exciting immersive experiences.

But some things from the old ‘Grasslands Gallery’ didn’t need changing, only a facelift. The pronghorn diorama at the gallery’s entrance remains as awesome and as valuable an educational tool as it did when it opened over 50 years ago in the summer of 1970, when it caught the eye of our first official visitors, Prince Philip and Queen Elizabeth:

A newspaper clipping reading,

The Prince asked a good question – pronghorn were frequently seen in the province prior to 1880, but are now only rare visitors wandering from North Dakota or perhaps Saskatchewan. But this is just one of hundreds of good questions that the diorama can elicit and help answer.

The diorama was designed, its backdrop painted, and installation overseen by renowned Manitoba artist Clarence Tillenius. He began planning in August 1968 and completed it, along with the bison diorama (much longer in production, from 1963), in June of 1970. As has remained the tradition for our dioramas to ensure authenticity, Tillenius visited the site that is portrayed, driving with other Museum personnel north of the U.S. border “to a point south of Waskada from where I [Tillenius] painted a study of the west end of the Turtle Mountains [sic] which appear in the background landscape.” (From a June 12 1970 letter to Dr. F.A.L. Matheson, then-president of the Museum.)

A rough handwritten plan for the Pronghorn antelope diorama. On the left are some notes about how many animals to include, what season to set the diorama in, and what size it should be. On the right a small sketch of the diorama from above with four animals. The note is dated August 9, 1968.

A rough plan for the diorama as envisaged by Tillenius. The basic size and shape was maintained, but only two actual pronghorn, a male and female, were in the final exhibit with a herd painted into the backdrop.

A museum diorama containing two pronghorns on a prairie landscape.

The pronghorn diorama effectively introduces the new Prairies Gallery much the way it introduced the original Grasslands Gallery, except for the new vibrant panels and its reinterpretation in a modern context. But it still shows the southwestern part of the Manitoba as it was before colonization, providing an opportunity to think about the transformation of our prairies over the last 250 years. The pronghorn diorama might be the closest some of our visitors ever get to experiencing original prairie in three dimensions. They can wonder at its expanse, its wildlife, and ponder its future. And it will do so for the next 50 years, or more we hope, perhaps inspiring the next generation of nature-conscious Manitobans to save our last vestiges of wild grasslands and their inhabitants.

Enduring – according to the dictionary – means having a validity that does not change or diminish. The pronghorn diorama, and the Museum’s many other signature life-size dioramas (bison, polar bear, caribou, moose, wolf den, elk, bat cave, snake den, Delta Marsh, Winnipeg 1919, and Nonsuch) are prime examples of enduring, undiminished wonder, exploration, and inspiration.

Come see for yourself!

Dr. Randy Mooi

Dr. Randy Mooi

Curator of Zoology

Dr. Mooi received his Ph.D. in zoology from the University of Toronto working on the evolutionary history of coral reef fishes. Following a postdoctoral fellowship in the Division of Fishes of the Smithsonian Institution…
Meet Dr. Randy Mooi