Silhouettes of trees in front of a starry night sky and the Milky Way.
November 1, 2023

Current Night Sky: November 2023

Current Night Sky: November 2023

November brings colder weather which quickly becomes the dominating factor for most observers. When the sky is clear it will be cold, so the most important equipment is not a telescope or pair of binoculars, but a pair of good boots and a warm parka. Don’t forget mitts, a toque, and several layers of underclothes.

Visible Solar System

Jupiter is at opposition early in the month, providing its largest and brightest views face this year. It rises at sunset and is visible all night, finally setting in the west as the sun rises.

Saturn is at its highest shortly after sunset, but still low in the sky for Manitoban skywatchers. Although visible until after midnight, telescope viewers will want to catch Saturn and its rings as early in the evening as possible to minimize the poor seeing nearer the horizon.

Uranus reaches opposition as well this month, its best and brightest for the year but still requiring at least binoculars for most observers to
spot it as a faint “star”. CHART COMING

In the morning sky, Venus rises about 3 hours before the sun and stands high in the east in the pre-dawn sky.

Mercury has moved into the evening sky but the angle of the ecliptic at this time of year keeps it too low to be easily spotted from Manitoban latitudes.

Mars passes around the far side of the Sun on November 17th and so is invisible from Earth.

The Moon passes several planets this month:

  • November 9 (morning sky): the waning crescent Moon is about 1 degree away from Venus in the morning sky, a spectacular alignment
    worth getting up for.
  • November 14 (evening sky): the thin crescent Moon is near Mercury, but the pair will be too low to observe from Canada.
  • November 24-25: The waxing gibbous Moon is near Jupiter tonight.

 Observer’s Calendar

All times are given in local time for anywhere around the world at mid-northern latitudes, unless it’s an event which occurs at a specific moment – then the time is given in Central Daylight Time – the local time for Manitoba.

November 2: Jupiter at opposition

November 4: Daylight Saving Time ends tomorrow – set your clocks one hour earlier before you go to bed tonight.

November 5: Last Quarter Moon; the South Taurid meteors peak in early evening, but only produce two to five meteors per hour. On the plus side, those meteors are often bright fireballs.

November 9 (morning sky): Venus 1 degree below crescent Moon

November 10: The monthly meeting of the Winnipeg Centre of the Royal Astronomical Society of Canada, the largest astronomy club in the province. The meetings are open to anyone and are also streamed online.

November 11: The North Taurid meteor shower peaks, also producing a few meteors per hour. Between the two overlapping Taurid streams and the upcoming Orionid stream, November often has an increase in bright fireballs.

November 13: New Moon

November 14: Antares occulted by Moon (daytime event)

November 18: The annual Leonid meteor shower peaks on the night of November 17-18, with a predicted rate of about 10-15 meteors per hour (under a dark sky) in the pre-dawn hours of the 18th. Th e Moon is a thin crescent in the evening and so won’t interfere with  observation, making this a decent year for this famous shower. No major outbursts are predicted for this year, which can cause rates of several thousand per hour. A potential minor outburst may occur near 12h Universal Time on November 21st, consisting of 10-15 bright meteors per hour. The is timing is well-placed for North American observers and is worth monitoring. For details on how to turn your meteor watching into scientifically useful data, visit the International Meteor Organization.

November 20: First Quarter Moon

November 25: Jupiter below waxing gibbous Moon

November 26: Uranus below waxing gibbous Moon IMAGE COMING

November 27: Full Moon (near Pleaides star cluster)

Scott Young

Scott Young

Planetarium Astronomer

Scott is the Planetarium Astronomer at the Manitoba Museum, developing astronomy and science programs. He has been an informal science educator for thirty years, working in the planetarium and science centre field both at The Manitoba Museum and also at the Alice G. Wallace Planetarium in Fitchburg, Massachusetts. Scott is an active amateur astronomer and a past-President of the Royal Astronomical Society of Canada.

See October’s Eclipse (safely!)

UPDATED: Oct. 6, 2023

On Saturday, October 14, 2023, worlds will align. The Moon will pass between the Sun and the Earth, casting a shadow on our planet that will sweep across North America. For viewers in a narrow path from Oregon through Texas and into Central America and Brazil, the Moon will appear to almost cover the sun, leaving a thin ring of sunlight around its edge: an annular (or ring) eclipse. 

For most of the rest of the continent, the alignment isn’t perfectly central. The Moon will cover only a part of the Sun, resulting in a partial eclipse. NO matter where you are, a solar eclipse is still a fascinating chance to see the solar system’s motion in action in real time

IMPORTANT SAFETY WARNING:

The Sun is very bright, and if you look at it too long you will damage your eyes permanently. It’s no more dangerous during an eclipse than it is any other time, but people don’t usually stare at the sun for three hours except during an eclipse. A partial or annular eclipse is still too bright to safely observe without special eye protection.

So how can you observe the eclipse safely? 

Other safe solar filters include a #14 welder’s glass (ONLY #14, the lower numbers are not safe for solar viewing), and special solar filters sold by telescope stores. Again, avoid online dealers you’ve never dealt with before. No other material is safe, despite what you might read online. You can’t use dark glass, mylar balloon material, exposed photographic film, or CDs to watch the eclipse.

 

Two pairs of eclipse glasses on a glass shelf below two racks full of unfolded eclipse glasses. One pair features a design with a close-up of the sun, and the other features a solar eclipse. The Manitoba Museum logo is on the arm of the glasses.

The safest way to observe the eclipse is by using special solar eclipse glasses from a certified dealer. You can get them at the Manitoba Museum’s giftshop for $3 a pair (discounts for class sets of 25 are available). You can email the shop to reserve your pair, or arrange for class sets for your school. Do not order them online at this point, as unfortunately there are more fake eclipse glasses than real ones available this close to the event. Saving a dollar while risking your eyesight for the rest of your life is not worth it. (Besides, all money spent at the Museum’s Shop goes to support our programs and activities!)

Buy your eclipse glasses today!

If you’d like a closer view of the eclipse, you can follow these instructions to make a solar projector out of a pair of binoculars and some cardboard.

Another safe way to view the eclipse is to join an eclipse party. Many astronomy clubs, planetariums, and science centres will host events to share the eclipse with their audiences. In Winnipeg, the various astronomical groups are joining forces to host a free eclipse viewing party at Assiniboine Park in the Kitchen Garden, just outside The Leaf. Solar glasses will be available, and safely-filtered telescopes will provide close-up views as the Moon moves across the sun’s face.

Circumstances for Manitoba

Eclipse PhasesTime
Eclipse Start10:28 am CDT
Eclipse Maximum11:42 am CDT
Eclipse End1:00 pm CDT

Depending on where you are, you will have a different view of the eclipse. In general, locations in the southwestern part of the province are closer to the center line, and will have a longer eclipse with more of the Sun covered. In Winnipeg, the solar disk will be about 40% covered, with a duration of just over two-and-a-half hours. In contrast, Churchill, Manitoba will only see the sun about 25% covered.

To get a detailed set of times for your location, you can visit this site and enter your location in the search bar at right. It will calculate exactly when the eclipse begins for your location and what you can expect to see.

Scott Young

Scott Young

Planetarium Astronomer

Scott is the Planetarium Astronomer at the Manitoba Museum, developing astronomy and science programs. He has been an informal science educator for thirty years, working in the planetarium and science centre field both at The Manitoba Museum and also at the Alice G. Wallace Planetarium in Fitchburg, Massachusetts. Scott is an active amateur astronomer and a past-President of the Royal Astronomical Society of Canada.

Total Lunar Eclipse – November 7-8, 2022

This Month’s Total Lunar Eclipse

This November, all of Manitoba is treated to a total lunar eclipse. Totally safe to view, this event allows you to feel the motion of the solar system happen in real time. Here’s what happens, and how and when to see it yourself.

A simulation of the November 7-8, 2022 lunar eclipse. UTC, or Universal Time, is 6 hours ahead of Manitoba’s Central Standard Time. [Video courtesy NASA Goddard Spaceflight Centre’s Scientific Visualization Studio]

What Is Going On?

A lunar eclipse occurs because the Moon is just a big rock in space, and space is dark. The only reason we can see the Moon is that there is a nearby star – the Sun – that is shining on it, lighting up one half of the rock. It’s the same with our planet,- the Earth – half of the planet is lit but the sun’s light (the daytime side), and half of the earth is dark (the nighttime side) because the sun can’t get to it.  Since the Moon orbits around our planet, sometimes we see the daytime side side of the Moon, and sometimes we see the nighttime side of the Moon, but most of the time we see some combination of the two. This is what causes the regular phases of the Moon, from New Moon to First Quarter to Full to Last Quarter.

A lunar eclipse occurs when something blocks the sunlight from being able to light up the Moon. There’s only one thing that can do that – our planet, the Earth. During a lunar eclipse, the Moon moves into the shadow that the Earth casts. As the Moon moves in its orbit, we can see the Earth’s curved shadow creep across the face of the Moon over the course of an hour or so, and finally covering it completely.

Why Does It Turn Red?

If the Earth was just a rock in space, the Moon would totally disappear during a lunar eclipse. Luckily for us, the Earth isn’t just rock, but also has an atmosphere – a layer of gasses like oxygen that surrounds the planet. Besides providing us air to breath, the atmosphere can often do interesting things with light. The atmosphere can make haloes around the Sun or the Moon, it can make rainbows when it’s full of water or mirages when it’s hot, and it can make sunrises and sunsets turn red.

An illustration of the effect of an eclipse on the wavelengths of light reaching the Moon from the Sun around the Earth.

During a lunar eclipse, Earth’s atmosphere scatters sunlight. The blue light from the Sun scatters away, and longer-wavelength red, orange, and yellow light pass through, turning our Moon red. *This image is not to scale. 

[Image: NASA Goddard Space Flight Center/Scientific Visualization Studio]

During a lunar eclipse, most of the light from the sun is blocked by the Earth, but a little bit goes through the layer of atmosphere and is bent slightly into a rainbow. This means that the edge of Earth’s shadow is quite “fuzzy” and sort of “fades in” from nothing to dark. The outer, fuzzier shadow is called the penumbra, and the inner, darker shadow is called the umbra. It also means that even when the Moon is in the umbra, the bending effect of the atmosphere allows the red and orange part of the sunlight to sneak into the earth’s shadow and still reach the moon. It’s like all of the world’s sunsets and sunrises are shining on the moon at the same time and letting that deep red-orange glow light it up. So, the moon often turns reddish-orange during the total phase of the eclipse.

BUT… the atmosphere isn’t just perfectly clear gas. There can be clouds of water vapour, there can be smoke from forest fires, there can even be ash from volcanic eruptions, and all of those can change who the light bends and how much of it gets to the Moon during the eclipse. Sometimes the Moon gets very dark, almost brown, while other eclipses the moon is a bright copper-orange colour. Each eclipse is different.

Check out this description from NASA Goddard Spaceflight Centre’s Scientific Visualization Studio for details.

How Do I See It?

If you live in most of North America, you can see the eclipse just by going outside at the right time and looking at the Moon. This link will let you choose your location and do all of the time zone conversions for you so you know what time the eclipse phases start and end for where you live. For this eclipse, the western half of North America sees the whole thing, with people farther east only seeing part of the eclipse before the Moon sets for them. Manitobans see essentially the entire interesting part before moonset occurs.

The only catch is that you need a clear sky without clouds to be able to see it. If it happens to be cloudy at your location, you can look for one of several live streams that will be going on from around the country. The Dome@Home team will be live-streaming the eclipse on the Manitoba Museum’s Facebook page and YouTube channel beginning about 2:30 am Central Time on November 8 (weather permitting). If our stream is clouded out, we’ll add links here to other events as we hear about them.

When does it happen?

The lunar eclipse occurs after midnight on Monday night, November 7, 2022, in the morning hours of Tuesday, November 8, 2022. The event technically begins at 2:02 am Central time, but it lasts nearly six hours and not all parts are equally interesting. If you just want to catch the highlights and see the colour, watching for an hour between 3:45 am and 4:45 am Central should give you a good view. Of course, this may be affected by clouds, so make sure you check the weather forecast to make sure it will be clear when you plan to observe.

Technically the eclipse begins at 2:02 am Central Time on November 8, 2022, as the Moon enters the faint and fuzzy outer shadow of the Earth (called the penumbra). The penumbra doesn’t darken the moon much at first, but the shadow gets darker towards the middle and so you might not notice it until 2:30 am or so.

Beginning at 3:09 am Central time, the Moon starts to move into the dark central shadow of the Earth – the umbra. The umbra is dark enough that you can see it as a curved dark “bite” out of the left edge of the moon. Over the next hour, it will look like the shadow is moving over the Moon and covering more of it, but it’s actually the Moon moving into the shadow.

During the early partial phase, the umbra looks dark grey, but that’s because the lit-up part of the Moon right next to it dazzles the eyes. As the shadow covers more of the Moon, it will be easier to see that the umbra is actually a dark reddish colour.

At 4:17 am Central time, the Moon moves completely inside the umbra, and the eclipse is total. Now, with none of the Moon lit directly, the colour becomes much easier to see. The colour changes slowly as the Moon moves through the Earth’s shadow, and the right side will eventually brighten. The Moon begins to leave the umbra at 5:42 am Central time, with the left edge of the Moon emerging first. For southern Manitoba, the Moon sets at 7:44 am Central, just before fully emerging from the umbral shadow. Folks farther west will get to see the final penumbral stages of the eclipse, which last until 8:50 am Central (5:50 am Pacific).

To get the exact times of each stage of the eclipse in your local time zone, visit timeandate.com’s awesome eclipse page, here.

Scott Young

Scott Young

Planetarium Astronomer

Scott is the Planetarium Astronomer at the Manitoba Museum, developing astronomy and science programs. He has been an informal science educator for thirty years, working in the planetarium and science centre field both at The Manitoba Museum and also at the Alice G. Wallace Planetarium in Fitchburg, Massachusetts. Scott is an active amateur astronomer and a past-President of the Royal Astronomical Society of Canada.

The 2022 Perseid Meteor Shower

Shooting stars streaking across a clear night sky.

August brings with it hot summer days, earlier sunsets, and the annual Perseid meteor shower. Here’s how you can get the best view of the shooting stars this season.

TL;DR: Best views for Manitobans will occur between 3 am and 5 am on the morning of Saturday, August 13, 2022, or the mornings immediately before or after that date. Go somewhere where you can see the stars, face east, and watch the sky. Don’t look at your phone or you will ruin the night vision you need to see them. If it’s cloudy, the morning before or after will still be pretty good. Expect to see a meteor every few minutes. If you’re lucky you might see more.

The Perseid meteor shower is the best-known, if not the best, meteor shower of the year, and August is a reasonable month to spend some time under the stars. On good years you can expect a meteor every minute or so. 2022 isn’t a “good year,” though, because the nearly-Full Moon will light up the sky and make it hard to see the fainter meteors. But it’s still worth getting out for, and the sky has a lot of other sights to see while you’re under the stars.

What’s Happening?

So, some basics first: a meteor is a glowing trail of light that shoots across the sky and disappears in the blink of an eye. Some are faint, while others can be so bright they light up the ground like the flash from a camera. They are caused by tiny pieces of dust floating out in space. When the dust hits the Earth, Earth’s upper atmosphere slows it down very quickly. At heights of 50km or more,  all of that speed energy gets turned into heat energy, and the piece of dust vaporizes. The excess heat causes the air around the dust to glow, and we see that glow from the ground as a meteor. (Some people call them “falling stars” or “shooting stars”, but they’re not related to stars at all.)

On any given night of the year, if you watched the sky for an hour continuously you’d see about half a dozen meteors on average. (They’re much more common than people think!) But on certain nights of the year, the Earth crashes through a cloud of dust – like an interplanetary dust bunny – and we see more meteors than usual. That’s a meteor shower.

These dust bunnies are left behind by comets that orbit the sun. A comet is a small body of ice and dust only a few kilometers across. There are millions of them, but most stay out at the fringes of the solar system and are invisible. When one gets nudged in towards the sun, it can warm up and melt, and the comet forms its characteristic tail. After the comet loops around the Sun it re-freezes, becoming invisible once again until its next return. The orbital path of the comet becomes very dusty from repeated passages of the comet. If the Earth’s orbit happens to intersect the comet’s orbit, we will hit that dusty patch at the same time every year.

Meteor activity from the Perseids actually begins around the end of July, but because the edges of the comet’s path aren’t as dusty as the middle, we don’t see very many Perseids until a few days before the peak. This year the peak occurs on the 12 of August, but there will be decent activity from the 10 through the 14 or so.

There’s a big, “BUT” on when the peak activity is for your location, though. Just because the earth is in the dustiest part of the comet’s path doesn’t mean you can see meteors then – it might be daytime for you, or you might be on the far side of the earth from the direction the earth is moving. So, the best time to watch is between about 3 am and 5 am on the mornings closest to the peak. Due to a variety of factors we won’t get into here, you’ll almost always see the most meteors from a single location in the pre-dawn hours.

How to See the Perseids

Like most astronomical events, a meteor shower is best seen away from the lights of the city where you can get an unobstructed view of the stars. Unlike most astronomical events, no special equipment is required – the most complicated item you’ll need is a reclining lawn chair or a blanket.

First, watch the weather. Meteors happen above the clouds, so if it’s cloudy we can’t see them. You want a clear forecast in the critical 3 am to 5 am period.

Second, get out of the city. Street lights make it hard to see stars, and this is even more true for meteors which flash by in a second or two. You don’t have to go far, but even 15 minutes outside of the city in an area without any big streetlights will quadruple your meteor count at least.

Third, get comfy and be patient. Meteors can occur anywhere in the sky, so you want to watch as much sky as possible. A reclining lawn chair or blanket lets you fill your view with sky instead of ground. And watch the sky continuously. By the time someone says, “there’s one!” you have already missed it. Keep your eyes on the sky. Don’t use binoculars or a telescope, since those only show a part of the sky at once – you want the wide field of view provided by the factory-installed optical detectors you came with.

In the age of mobile devices, this advice is even more critical. It takes a good five minutes for your eyes to go from “daytime” mode to “night vision” mode, but it only takes a second of bright light to ruin your night vision and require another five minutes to switch back. every one second you look at your screen means you’ll miss at least 5 minutes’ worth of meteors.

Shooting a Shooting Star

You can take pictures of the sky with any camera, even the one in your mobile device – if you know how. The typical camera is designed for family pictures at the beach, not stars, so find out how to make your camera work well. Turn your flash off (it won’t help, and will ruin the night vision of everyone else around you), and set the camera for “night mode” or long exposure. There are also dedicated apps for taking star pictures you can find on your device’s app store. Point-and-shoot cameras often let you set the camera to “bulb” (manual) or take exposures up to 30 seconds. A DSLR or mirrorless camera will take amazing star pictures, but takes practice to use.

Point the camera at an area of sky, set it on the ground or use a tripod, and press the button. You’ll get a picture of the stars at least, and if you’re lucky, a meteor will happen in that part of the sky while you’re taking the picture. If not… just try again. And again. For every meteor image you see online, that photographer has hundreds of no-meteor images that still show the constellations, Milky Way, satellites, or Northern Lights. Still cool, even without the meteor.

If you get any good pictures this meteor shower, I’d love to see them! Send them to Space@ManitobaMuseum.ca and we’ll show the best ones on our Dome@Home show.

Scott Young

Scott Young

Planetarium Astronomer

Scott is the Planetarium Astronomer at the Manitoba Museum, developing astronomy and science programs. He has been an informal science educator for thirty years, working in the planetarium and science centre field both at The Manitoba Museum and also at the Alice G. Wallace Planetarium in Fitchburg, Massachusetts. Scott is an active amateur astronomer and a past-President of the Royal Astronomical Society of Canada.

Comet Leonard visible in morning

At the edge of the solar system, there is a cloud of small, icy objects that are left over from the formation of the solar system. They’re too small to see from Earth, and much too far to visit, and yet they are like a deep-freezer full of evidence of how our solar system formed, preserved in the cold of deep space. Luckily, every so often one of these icy bodies gets bumped or deflected into a new orbit that carries it towards the inner solar system. Right now, you can see one of these tiny bodies in the sky with nothing more than a pair of household binoculars.

The object in questions is called Comet 2021 A1 (Leonard) – it was the first comet discovered in 2021, by Greg Leonard, a senior research specialist working at the Catalina Sky Survey at the University of Arizona. Catalina scans the sky looking for new things, so it finds a lot of comets, and this isn’t the first Comet Leonard, either. However, this comet Leonard may be bright enough to see without a telescope later this month.

A star chart outlining the trajectory of Comet Leonard from December 2 to 7, 2021.

How Do I Find It?

The comet is currently sitting in the morning sky between the Big Dipper and the constellation Bootes the Herdsman, and it has been seen in binoculars from a dark location (read: outside the city, without any nearby lights or the Moon to interfere). You can use the detailed chart below to zero in on where the comet will be each night – its orbit carries it around the sun fairly quickly and it’s in a different spot every night.

What Will I See?

If you’re using binoculars, you will probably see a faint round ball of grey light, perhaps with the hint of a tail sticking upwards. Try not looking directly at the comet, but direct your eyes slightly away and get the more sensitive parts of your retina involved – this technique of averted vision is key in seeing fainter objects.

If you have a DSLR camera, try sticking it on a tripod and taking some time exposures of the sky – use ISO of 800 or higher and exposure times of 1 second up to about 10 seconds, and see what you get. (You might get something with other kinds of cameras or cell phones, but probably not.)

Why Bother?

I’m not gonna lie, seeing a faint fuzzy ball in the sky isn’t going to make you jump up and down because of the physical appearance of the object. It’s a challenging observation of an object that humans may never see again, and a chance to see an object that is older than anything on our planet. Plus, comets have a way of being unpredictable, sometimes surging in brightness unexpectedly or even breaking apart into multiple pieces. You never know what you’re going to see.

Finding a comet with binoculars is something we can’t do very often – maybe once a year or even less. It’s also perfect practice for using a telescope – many of he skills you develop finding Comet Leonard will help you out if you aspire to use a telescope at some point. But for me, the chance to see such a fleeting celestial visitor is a magical experience, one that really makes me feel connected with the cosmos.

Now, all we need are some clear skies…

Scott Young

Scott Young

Planetarium Astronomer

Scott is the Planetarium Astronomer at the Manitoba Museum, developing astronomy and science programs. He has been an informal science educator for thirty years, working in the planetarium and science centre field both at The Manitoba Museum and also at the Alice G. Wallace Planetarium in Fitchburg, Massachusetts. Scott is an active amateur astronomer and a past-President of the Royal Astronomical Society of Canada.

Perseids Meteor Shower: 2021 Edition

August brings the Perseids meteor shower, an annual event that gets many people looking skyward. In recent years, social media has been hyping (and sometimes overhyping) celestial events, since they tend to generate a lot of interest (and thus “clicks”, “likes”, and “shares”), so it can be hard to know what you can actually expect to see. Here is the Manitoba Museum Planetarium’s guide to the 2021 Perseids meteor shower.

Perseids Meteor Shower 2021

Start of activity: July 17

Peak activity: early morning of August 12

Peak rate: 50-75 meteors per hour from a dark sky

Lasts until: August 24

A photograph of several meteors shooting past in the night sky as the last bits of sunset fade away near the horizon.

What’s Happening?

A meteor is the formal name for a “shooting star” or “falling star” – it’s a streak of light that flashes across the night sky. They happen when a tiny piece of dust or grain of sand from space crashes into the earth’s atmosphere at thousands of kilometers an hour. The speed of the dust particle gets turned into heat and light energy, and creates the visible flash we see. The piece of dust is totally vaporized while still high up in the atmosphere dozens of kilometers above Earth’s surface.

This actually happens all the time, but most of us don’t notice. If you went out on a dark, moonless night you’d probably see a half-dozen metros per hour if you watched the sky continuously. But they only appear for a second and they’re gone – so look down at the wrong time and you’ll miss them.

The source of this dust is perhaps surprising – it’s leftover material from the formation of the planets. There’s dust spread throughout the solar system, each piece in orbit around the sun like a tiny planet. The earth as it orbits the sun sweeps up some of this dust, and each one becomes a meteor.

Several times a year, though, the earth goes through an extra-thick area of dust – like a cosmic dust bunny. These dust bunnies are left behind by comets – “dirty snowballs” a few kilometers across that orbit the sun in oval-shaped orbits. When comets get close to the sun, the snow melts and leaves the dust behind in a trail. If that trail happens to cross the orbit of the earth, we will see a meteor shower every year on that date.

The Perseids

The Perseids meteor shower is probably the best-known meteor shower (although it’s not the best one of the year) because it happens during summer vacation time for the northern hemisphere. Its peak is around August 12th each year, although the date varies by a day or so. The Perseids are dust left behind by Comet Swift-Tuttle, which loops around the sun every 133 years or so. The meteor shower is named after the constellation that the meteors seem to come from – the constellation Perseus.

How and When to Look

The best way to see meteors is to get outside the lights of the city. Some of the meteors will be faint, and so you will miss them if the sky is too bright from nearby streetlights, houses, or other sources of illumination. A park or parking lot outside the city is a good place to head. This year, the light from the Moon will not interfere either because the moon will set in early evening, so this is probably one of the better years to see the Perseids.

Meteor showers are the ultimate in low-tech observing. Take a blanket or reclining lawn chair along, and set up with your feet pointed away from any nearby lights or light pollution. (For southern Manitobans, this generally means putting your back to Winnipeg’s lights.) You don’t need binoculars or a telescope – you want to be able to see as much sky at once as you can, since the meteors can appear anywhere in the sky. A telescope would just narrow your view too much.

Turn off your phone – the light from a mobile device will ruin your eyes’ ability to see faint stars and meteors. Even a quick glance will make it hard to see for a few minutes, so resist the inclination to check the web. Spend the time with the stars instead.

As for when the look – it depends on what you want to see. If you go out before midnight, you will see only a few meteors, but the ones you do see will probably be big bright ones. If you want to see lots of meteors, you want to watch from about 2am to dawn on the morning of the 12th. In the run-up before dawn, your part of the earth is heading straight into the trail of dust, and you’ll see the most meteors.

This is why some people have been disappointed by meteors showers (in addition to the social media hype). Meteor showers have a slow fade-in period of a few weeks, then a peak that might only last a few hours, followed by a slow fade-out. On the night before or after the peak, meteor rates are often less than half of what the peak is, and the rate drops quickly as you get farther from the peak.

This year, the Perseids are definitely worth the drive out of town for the peak. I plan to be out from dark on the 11th until dawn on the 12th with our all-sky camera system to record what we can. Follow the Manitoba Museum on social media for updates and live broadcasts during the meteor shower (weather permitting).

While you’re out counting meteors, there are lots of other sights to see: constellations, planets, satellites, and the year’s best views of the Milky Way. Visit the planetarium in person to see Manitoba Skies, a live sky tour, to learn more (showtimes here). You can also check the Manitoba Museum’s Astronomy blog for Manitoba Skies posts about monthly night sky information.

Clear skies!

Scott Young

Scott Young

Planetarium Astronomer

Scott is the Planetarium Astronomer at the Manitoba Museum, developing astronomy and science programs. He has been an informal science educator for thirty years, working in the planetarium and science centre field both at The Manitoba Museum and also at the Alice G. Wallace Planetarium in Fitchburg, Massachusetts. Scott is an active amateur astronomer and a past-President of the Royal Astronomical Society of Canada.

A Sunrise Solar Eclipse

On the morning of June 10, 2021, early risers across Manitoba will see a partial eclipse of the sun from most of Manitoba.

TO VIEW THE ECLIPSE YOU MUST USE ONE OF THE SAFE METHODS DESCRIBED BELOW.

The eclipse is already underway by the time the sun rises, and only lasts about an hour after sunrise, so this will be an early morning event on June 10.

A crescent of the sun mid-eclipse as the moon passes between it and Earth.

From Winnipeg, the rising sun on June 10, 2021 will appear similar to this view, shot during the 2017 eclipse. (Image: Scott D. Young)

What is Happening?

As the moon orbits the earth, it sometimes crosses the sun from our point of view in an event called a solar eclipse. When the moon only covers part of the sun we see a partial eclipse – this is what we will see from Manitoba. From other areas of the earth, the moon will appear to cross the center of the Sun, blocking out most of the sun’s rays in an annular or “ring” eclipse. This occurs because this eclipse happens when the Moon is near its farthest point from the Earth and so doesn’t appear quite big enough to cover the entire sun. When an eclipse happens when the moon is near its closest point to earth, the moon’s disk can cover the entire solar disk and a total solar eclipse results. A total solar eclipse is one of the true spectacles of nature, worth traveling to see. A total solar eclipse crossed the central United States in August 2017. Manitoba last witnessed a total solar eclipse on February 26, 1979.

For more details on the mechanics of eclipses, see NASA’s explanation here.

How Can I Observe the Eclipse Safely?

The sun is always too bright to observe directly without special eye protection. Sunglasses are not sufficient – a specially-made solar filter is required to prevent permanent eye damage. Eclipse glasses purchased for the 2017 total solar eclipse are sufficient as long as there are no scratches or holes in the silver Mylar material. A #14 welder’s glass (available at welding supply shops) will allow you to view the sun safely. No other materials should be used – while dark plastic or Mylar balloon material may dim the sun’s image in the visual range, the invisible ultraviolet and infrared light can still enter your eye and cause irreversible damage or even blindness.

Due to COVID restrictions over the past year, the Museum’s shop is not open, and we do not have any eclipses glasses for sale.

If no appropriate filter is available, you can use a pair of household binoculars to project an image of the sun using the method described here. Note: DO NOT LOOK AT THE SUN THROUGH BINOCULARS! Make sure you follow the instructions carefully, including the part about turning the binoculars away from the sun every few minutes to let them cool down. The Museum is not responsible for any injury or damage due to solar viewing; if you’re uncertain it’s best to watch the event online.

If you have a telescope, do not look at the sun with it or you will instantly and permanently blind yourself. Safe solar filters that fit over the front of the telescope are available for telescopes through mail order, but they will cost $100 or more and at this point are unlikely to arrive before the eclipse. You can use your telescope to project an image of the sun similarly to the binocular method shown above, but the increased heat may damage your telescope. This is not recommended unless you already know how to observe the sun properly.

When and Where Should I Look?

All of Manitoba can see the partial eclipse, although most of it occurs before sunrise; we catch just the end of it. The annular or ring phase is only visible from a path that starts in northwestern Ontario, goes up over the north pole, and down into eastern Russia. With provincial and international borders closed at the time of writing, Manitobans will have to be content with a partial eclipse and an online view of the annular portion.

For all of Manitoba, the eclipse is already underway as the sun rises – check your local newspaper or heavens-above.com for sunrise and sunset times for your location. In Winnipeg, the sun will be about half-eclipsed when it rises at 5:27 am CDT in the northeast, and the moon will uncover the sun as they both rise. By 5:55 am CDT (less than a half-hour after sunrise) the eclipse will be over from Winnipeg.

Points farther north in Manitoba will have better views. From Churchill, Manitoba, the sun rises at 4:08 am CDT with the eclipse beginning 4 minutes later. At 5:09 am CDT the sun reaches a maximum of 85% eclipsed before the moon moves on and uncovers the sun. From Churchill the eclipse ends at 6:08 am CDT. Flin Flon will see a maximum 75% eclipse just after sunrise; Thompson reaches 85% about 10 minutes after sunrise.

 

Links

https://www.timeanddate.com/eclipse/map/2021-june-10?n=265 – eclipse times and simulated views for any location

https://eclipsophile.com/2021ase/ – maps and weather prospects for the eclipse

https://science.nasa.gov/eclipses/ – eclipses and transits overview

Scott Young

Scott Young

Planetarium Astronomer

Scott is the Planetarium Astronomer at the Manitoba Museum, developing astronomy and science programs. He has been an informal science educator for thirty years, working in the planetarium and science centre field both at The Manitoba Museum and also at the Alice G. Wallace Planetarium in Fitchburg, Massachusetts. Scott is an active amateur astronomer and a past-President of the Royal Astronomical Society of Canada.

The Great Planetary Conjunction of 2020

As you may have heard, on December 21, 2020, the planets Jupiter and Saturn will be very close together in the sky, an event called a conjunction. Because this coincidentally is happening on the same day as the winter solstice, and only a few days before Christmas, a lot of media have dubbed this the Christmas Star. There’s been some confusion about what exactly that means and how you can see this event, so here’s a handy reference guide to the whole thing.

A circled star in the evening sky. A large black circle shows the zoomed-in view of the area which includes several stars as well as Saturn and Jupiter. Text aong the bottom reads,

What is happening?

The planets Jupiter and Saturn will appear very close together in the sky, almost touching, on the early evening of December 21st, 2020. This kind of event happens about every 19 years, when Jupiter passes Saturn as seen from the Earth, while all three planets are in their orbits around the Sun. However, usually the passage isn’t this close – so, we haven’t had a Jupiter-Saturn conjunction this close since the middle ages.

When can I see it?

It’s actually in progress already – Jupiter and Saturn have been visible in the evening sky for months, slowly moving closer together as Jupiter catches up to slower-moving Saturn. Over the weekend of December 18-20 the two are already closer together than the apparent size of the Moon in the sky. Each night they will be closer together, leading up to closest approach on the evening of Dec. 21, 2020. After the 21st, Jupiter will move farther away from Saturn night after night. The Manitoba Museum will be doing a live-stream telescope event on the early evening of December 21 so you can see the planets up close and in detail.

What will it look like?

With the unaided eye, you can see Jupiter as a bright white “star” in the southwestern sky right after sunset. Saturn is quite a bit fainter, and has more of an off-white colour. In the days before closest approach you’ll easily distinguish them as separate objects. On the evening of closest approach, most people will still probably be able to see them as two separate objects (unless you have less than 20/20 vision).

In a small telescope, you’ll be able to see both planets at the same time in a low-power eyepiece. As the sky darkens, you’ll also see some of the moons of Jupiter and Saturn appear. The Manitoba Museum will be doing a live-stream telescope event on the early evening of December 21 so you can see the planets up close and in detail.

What’s all this about a Christmas Star, then?

That’s… complicated. The common image many people have of the Christmas Star comes from many different sources. The Christian Biblical story of the “Star of Bethlehem” actually doesn’t say much about what the “star” looked like, but centuries of art and Christmas card images have turned it into a huge blazing beacon in the heavens. This event will not look like that. (See “What will it look like?” above.) The Star of Bethlehem actually wasn’t something that everyone saw – it was only the Magi, the “wise men from the East” who saw it. That alone tells us it probably wasn’t as simple as a bright light in the sky.

There are some theories that suggest that the “wise men from the east” were astrologers, and so they would have been excited about things like planetary conjunctions, things that were seen as significant but not immediately noticeable to the casual viewer. Things like planetary conjunctions would have been highly significant to the Magi, especially if they were rare events or repeated events. If we run with this hypothesis, there was a conjunction of Jupiter and Saturn in 7 B.C. – actually, there were three of them, in an even-rarer triple conjunction. This actually times out fairly well to match the Biblical account, since we know that the 8th-century monk who did the math to calculate the year 1 A.D made some errors and was off by a few years – the Nativity story probably actually occurred a few years before 1 A.D. in our current calendar. For example, King Herod, who was alive during the Nativity story, actually died around 4 B.C., so we know the story had to take place before then.

If this idea is correct, the wise men saw the triple conjunction in 7 B.C., interpreted it to mean there would be a royal birth in Judea, and traveled to the land of King Herod. King Herod had no idea what they were talking about – his court astrologers had not seen a “star” that they thought was important. (Neither did Chinese astronomers of the day, who took meticulous observations of any new objects like comets, new stars, and the like.) The wise men leave Herod and travel to Bethlehem, arriving sometime in 6 B.C. or perhaps a bit later.

None of this is certain, of course – there are other possible explanations for the Star of Bethlehem, like a conjunction of Venus and Jupiter in 2 B.C. that would have been the brightest star in the sky. And given the nature of the Nativity story, there isn’t enough evidence to even say whether the Star was an astronomical object, a divine inspiration, an interpretation by the wise men, or an idea added in later revisions of the Bible throughout the ages. And really, not everyone feels the Star of Bethlehem needs an explanation in the first place. As I said, it’s complicated.

So, because it’s possible that the Star of Bethlehem was inspired by a rare triple conjunction of planets in 7 B.C., and because this year we are seeing a single conjunction of the same planets Jupiter and Saturn, which happens to occur in December, the Great Planetary Conjunction of 2020 has been dubbed the Christmas Star. And so many people are expecting the Christmas Card version of the event: a huge light in the sky.

Conclusion

To some, the actual Planetary Conjunction of 2020 will fall short of their expectations. To others who attach religious significance to the idea of a Christmas Star, it might disappoint as well. But consider what is happening: humans, a part of the universe that has become alive and aware, are standing on a ball of rock hurtling through space, looking out at the two largest planets in our solar system. On December 21, 2020, those two planets will be lined up from our viewpoint, so that they will both be visible in a telescope at the same time – a very rare and pretty cool event to watch. In the days before and after, we can watch the clockwork of the heavens tick forward night after night, as the relative position of the Jupiter, Saturn, and Earth change as they orbit the Sun. Right now, a human-made robotic spacecraft is in orbit around Jupiter, beaming back close-up pictures of a gas giant planet covered with storms larger than the Earth. On some of the moons of the two planets, there may in fact be some form of primitive life, living there now: in the underground oceans of Europa, for example, or the thick atmosphere and methane seas of Titan. And we can participate in these grand cosmic events just by going outside and casting our eyes upwards on a clear winter’s night. I think that qualifies as a miracle of sorts, no matter what your beliefs are.

Scott Young

Scott Young

Planetarium Astronomer

Scott is the Planetarium Astronomer at the Manitoba Museum, developing astronomy and science programs. He has been an informal science educator for thirty years, working in the planetarium and science centre field both at The Manitoba Museum and also at the Alice G. Wallace Planetarium in Fitchburg, Massachusetts. Scott is an active amateur astronomer and a past-President of the Royal Astronomical Society of Canada.

Astronomy Resources

Explore the stars from your own backyard! This page has resources for budding astronomers and scientists of all ages. Build your own star clock, track the International Space Station, connect with local Manitoba astronomy groups, and more.

The Northern Lights

  • SpaceWeatherLive.com offers forecasts for northern lights visibility on their website or via an app for IOS and Android.
  • On Facebook, the Manitoba Aurora and Astronomy group tracks local sightings and shares information on how to observe and image the northern lights in Manitoba.

Safe Sun Viewer

Use a cardboard box to safely view the sun during a solar eclipse! Follow the bilingual instructions at the Canadian Space Agency!

Build a Star Clock

Exploring the Sky

General Astronomy Information

Astronomy Groups in Manitoba

Astronomy Publications

  • SkyNews Magazine – the Canadian magazine of amateur astronomy. Lots of current information and useful links for amateur astronomers of any level.
  • The Royal Astronomical Society of Canada publishes several books useful to amateur astronomers in Canada.
  • Sky & Telescope Magazine – daily information updates, star maps, and a wealth of information for the amateur astronomer.

Astronomy Education Resources

  • The Astronomical Society of the Pacific – excellent site for teachers with lots of resources, lesson plans, and products for astronomy education. The site is based on the American curriculum but is still useful for Canadian teachers.

Space Exploration

Scott Young

Scott Young

Planetarium Astronomer

Scott is the Planetarium Astronomer at the Manitoba Museum, developing astronomy and science programs. He has been an informal science educator for thirty years, working in the planetarium and science centre field both at The Manitoba Museum and also at the Alice G. Wallace Planetarium in Fitchburg, Massachusetts. Scott is an active amateur astronomer and a past-President of the Royal Astronomical Society of Canada.

Choosing a First Telescope

By Planetarium Astronomer Scott Young

Choosing a first telescope is bit like buying a car – there’s no “best” car, but there is the one that will work best for you. It depends a bit on what you want to do with it, where you will observe from, and of course your budget.

Nightwatch book cover featuring the silhouette of a person looking into a telescope. The background shows a starry night sky lit in pinks and purples.First step: educate yourself. Pick up Nightwatch by Terence Dickinson. It will provide you with information on a first telescope, and help you use whatever telescope you buy. This is THE best book for first-time astronomers, and will help you not only choose a telescope, but learn to use it as well.

Second step: learn the sky. If you can’t point your finger at a galaxy, a star cluster, or a planet, you won’t be able to point your telescope at it either. Unless you spend big money, you’re not going to get a computerized telescope that will do everything for you – you still need to know where to look. Space is mostly empty space (hence the name), and so finding the interesting objects takes some work. Learn the constellations (again, Nightwatch is a great reference), use binoculars if you have them, get to know the sky, take an astronomy course (click here to learn about the current Dome@Home offerings), join an astronomy club (the local group is called the Royal Astronomical Society of Canada – Winnipeg Centre). All of these steps will help you get the most out of your telescope when you do get one, and will also help you know more about them before you buy one.

Now you’re ready for your first telescope. Here are some basic facts to help guide your choice.

The main thing about a telescope is its aperture – the diameter of the main lens or mirror. The bigger the aperture, the more “power” a telescope has – it gathers more light, it resolves finer detail, it makes objects look better. Of course, as the aperture increases the telescope also gets physically larger and more expensive.

Contrary to popular belief, magnification is not an important function of a telescope – any telescope can theoretically magnify any amount! What matters is, how much can a telescope magnify and still provide a clear image? Small department-store telescopes often claim “600x” or “1000x”, but that’s baloney. You can almost never use more than 200-300x on any telescope, because the atmosphere of the Earth is not steady enough – the image gets bigger but fuzzier, and you lose detail. Most observing is done in the 50x to 200x range of magnification. So, avoid any telescope advertised based on magnification – they’re trying to fool you into buying a junky telescope.

We also recommend you avoid a telescope with a computer or motors built in, unless you’re spending $800 or more – every dollar that goes into the computer is taken away from your optics, and you usually wind up with a telescope that isn’t very good optically or electronically. If you want this option, it will cost a significant amount of money if you want it to actually work. As an example, Orion’s computer-aided telescope line costs about $400 more than the equivalent manual scope.

One big question to consider: where are you using the telescope? If you have to carry it down stairs or load it in a car with a family every time you’re going to use it, I would recommend a different scope than if you’re going to use it mostly in your own backyard. Most “real” telescopes are bigger than the ones you see in camera stores, and are bigger than people expect. They’re not unreasonable, but they won’t fit in the back seat with two kids. The old-style “spyglass” on a spindly fold-up tripod that most people think of has been replaced by a sturdy large-diameter tube on a wooden box – they look more like a cannon.

Recommended Starter Telescopes

I have personally used both of these scopes, and can recommend them from experience as great instruments for exploring the Universe. Even though I have access to larger telescopes, I still use my personal GoScope 80 and StarBlast 6 for stargazing.

We invite you to order through our trusted online distributor, Orion Telescopes. Alternatively, we also recommend a local company that sells and repairs telescopes, Side Lines Distribution.

The universe awaits!

Scott Young

Scott Young

Planetarium Astronomer

Scott is the Planetarium Astronomer at the Manitoba Museum, developing astronomy and science programs. He has been an informal science educator for thirty years, working in the planetarium and science centre field both at The Manitoba Museum and also at the Alice G. Wallace Planetarium in Fitchburg, Massachusetts. Scott is an active amateur astronomer and a past-President of the Royal Astronomical Society of Canada.