154

Temporarily Closed

To  protect the health
of our visitors, the
Manitoba Museum
is
closed until
further notice.


Click for Holiday Hours
*Hours of operation vary for holidays.

Blog

Science Gallery & Planetarium

Science Gallery & Planetarium

05/01/20

Astronomy Day 2020 is Saturday, May 2

International Astronomy Day is Saturday, May 2, 2020, and we’re celebrating with online programming and a virtual telescope party. See the schedule below.

Astronomy Day was founded in the 1973 as a day when professional and amateur astronomers around the world would bring the wonder of the universe to the public. Astronomy clubs, planetaria, science centres, and universities have traditionally run public events during the day, and telescope viewing parties at night. This year, things are moving online, and the Manitoba Museum is joining our colleagues across the country to getting people “looking up”.

We’ll be doing Facebook live events at the following times (you don’t need a Facebook account to view the events, but you would if you want to join in the chat). We’ll also  make the recorded video available through the Museum’s YouTube channel after the fact.

1:00pm – 1:20pm – Astronomy Day Kick-Off! Join Senior Planetarium Producer Scott Young for an introduction to skywatching. Discover what Astronomy Day is all about, and learn how you can find the stars and planets in the night sky.

3:30pm – 3:50pm – Make a Sky Clock (Hands-On Activity): Make your own Sky Clock to tell time at night using the Big Dipper. Download the instructions and materials list here.

4:30pm – 5:00pm – Q&A/Live Telescope Viewing of the Sun: See the sun live through the planetarium’s solar telescope, and ask all of your astronomy-related questions!

8:30 pm – 10:00pm Live Telescope Party (Weather Permitting): Join us for close-up views of the sun, moon, and planet Venus. We’ll have live video views through a variety of telescopes, tour the visible constellations, and also watch for satellites and northern lights. (Note: this event requires clear skies; check the Facebook event page on Saturday morning for a forecast update!)

Stay up-to-date by joining the Manitoba Museum on Facebook, Twitter, and Instagram @ManitobaMuseum. The Facebook event link is here: https://www.facebook.com/events/672437023556336/

See you on Astronomy Day!

04/03/20

What season is this again?

submitted by Science Communicator Claire Woodbury

Welcome to spring! Or at least it’s supposed to be… astronomers tell us that spring in the northern hemisphere began on March 19th, but with all this snow, it looks more like Winter 2.0. Why do seasons on the calendar not quite match up with seasons in the weather and why are we colder in winter anyway?

You probably know that the earth’s revolution around the sun causes the seasons. So here’s a question for everyone, when it’s winter in Manitoba, where is the earth in relation to the sun? Is it closer to the sun or farther away?

During a Manitoba winter, the earth is actually closer to the sun then in summer! Whaaaaat!? It is a common misconception that the earth is farther away from the sun in winter and closer to the sun in summer.

How does it work then? Well, it’s not about whether a planet is closer or farther from the sun, but whether it is tilted away or towards the sun.

The Earth is spinning on its axis, kind of like a top or a Beyblade. But it’s not spinning directly “up and down” relative to its orbit around the sun: it’s on a slight angle, about 23.5°. This means that as Earth travels around the sun, one hemisphere is tilted towards the sun while the other is tilted away.

In the summer the Northern Hemisphere is tilted towards the sun and receives more sunlight directly.

The sun’s rays are a form of energy that provides us with light and heat. The direct line of the sun during summer gives us optimal growing conditions with lots of light and heat. Plants need sunlight in order to create their food as well as warm temperatures so they don’t freeze. And in turn animals have food to eat and habitat to live in. (And humans get to hit the beach) Along with that light and heat there is also energy we can’t see in the form of ultraviolet radiation. This kind of energy is what causes people to get a suntan or burn.

In the winter, the Northern Hemisphere is tilted away from the sun, so it receives sunlight less directly. We get colder temperatures and less U.V. radiation. While the Northern hemisphere is experiencing winter, the southern hemisphere is experiencing summer and vice versa. If you live near the equator, you’re pretty much experiencing direct sunlight all year round and so have more stable warm temperatures.

The Earth’s tilt as it orbits the sun causes our four seasons. (Image: NASA)

This brings us back to our question, when does winter stop and start anyway?

The calendar says winter starts around December 21, the winter solstice. The winter solstice is when we have the least amount of daylight and therefore the shortest “day”. We get a short day because we are angled the farthest from the sun and the sun appears very low in the sky for only a few hours.

Here in Manitoba it feels like winter starts in October and goes through to March (or even to May!) Depending on where you live, the coldest part of the year doesn’t always fall directly when astronomical “winter” falls on the calendar. That’s because the calendars we use today are based on ones made in ancient Rome, which is surrounded by water. Water absorbs a lot of heat and releases it slowly, keeping temperatures very mild. In ancient Rome, the coldest part of the year really didn’t start until the Winter Solstice. Here in Manitoba we don’t have the moderating effect of the Mediterranean Sea, so we usually have more extreme differences between summer and winter.

For more fun with seasons see “Why Seasons Make No Sense” from PBS on YouTube: https://www.youtube.com/watch?v=s0oX9YJ5XLo

To see what stars and planets are up in the sky during each season see our current night sky page: https://manitobamuseum.ca/main/visit/planetarium/manitoba-skies/

03/30/20

Satellites in a train

Winnipeg residents have been reporting some unusual sightings in the night sky over the past few days. Bright star-like objects have been seen moving across the sky, following each other in a train. Sometimes half a dozen or more of them are visible at the same time. What are these?

Unfortunately, they won’t be “unusual” for very long. These are the StarLink satellites, launched by Elon Musk’s Space-X to deliver internet to remote corners of the globe. 60 satellites at a time are put up by the company’s Falcon-9 rocket, and they slowly spread out in a circle around the earth. For the first couple of weeks after launch, they are relatively close together, and all appear to travel in the same path across the sky. As of today, there are 362 of these satellites, but the plan is for 12,000 of them. As in, twice as many satellites as the number of stars you could see from a perfectly dark location.

And did we mention that each one is one of the brightest objects in the sky? They shine at about magnitude 1 or brighter, which means they’re brighter than the stars of the Big Dipper and as bright as the brighter stars. Only the planets and the moon, and maybe a few stars, will outshine a StarLink satellite.

It’s pretty easy to spot these satellites when they happen to be going over your town. Visit www.heavens-above.com and set it to your location, and you’ll get a list of all of the satellites visible that night. StarLink will make up a big chunk of that list. For example, from Winnipeg between 9:25pm and 9:45pm on Monday night, March 30, there will be 44 StarLink satellites visible (plus a few other satellites). The sky is getting to be a busy place!

StarLink has brought criticism from astronomers, who are already finding interference with the satellites getting into their field-of-view while trying to do science. Those concerned with the amount of space junk in orbit are also concerned, as none of these satellites has a re-entry plan and will just stay up there, cluttering orbit and posing a risk to any other satellites launched, including any attempts to send robots or humans to the other planets. We’re basically building a cage around the Earth, with StarLink satellites as the bars.

 

 

 

02/13/20

A total eclipse… of Mars?

This month brings skywatchers a rare sight: a total eclipse of the red planet Mars by our Moon. The event is visible across much of North America, and is the only event of its kind all year.

As the Moon orbits our planet, it gets in the way of all sorts of other celestial objects that are farther away. When the moon blocks out the sun, we call it a solar eclipse, but a more general term is occultation. (“Occult” means “hidden”, so it makes sense. One object is hiding another.) The moon occults dozens of stars every month, but it’s fairly rare that things line up just right so that the Moon occults a planet. This month, we’ll see the thin crescent Moon occult Mars, early on the morning of Tuesday, February 18th. Here’s how to spot it yourself.

First thing: this is an early morning event! You want to be outside and ready to watch by about 5:50 am Manitoba time. Find an observing spot that has a clear horizon to the southeast. The thin crescent moon and Mars will be right beside each other, very low in the southeast. By this time, the sky is already starting to brighten with the first gleam of twilight, so you might have trouble seeing Mars clearly. Bring along a pair of binoculars or a telescope if you can.

As you watch, you will see two motions occur. First, everything will be slowly rising up higher into the southern sky. This is caused by the planet you’re standing on (earth, for most of us) rotating, and tilting the horizon “down” to uncover more of the sky. At the same time, Mars and the Moon will be getting closer together. This is almost all due to the Moon’s orbital motion around the earth; Mars is so far away in comparison that its motion really doesn’t matter much.

As the minutes tick by, the bright crescent of the moon will get closer and closer to Mars. Depending on the sky conditions and if you’re using any optical aid, you might lose track of Mars when it’s very close to the Moon. At some point, the moon’s edge will start to cover up Mars. Over the next 14 seconds, Mars will dim as it is slowly covered up, eventually disappearing completely behind the bright edge of the moon. Mars is in eclipse!

If you have a telescope, crank up the magnification as high as you can and you will be able to see Mars as a tiny disk, almost fully illuminated. At high power, you can watch the edge of the moon actually move across Mars over those 14 seconds. Eclipse should happen about 6:02 am Manitoba time, plus or minus a minute or so depending on where you are in the province.

Then it’s time to wait around for an hour or so, as the Moon continues its orbital motion and the earth continues its rotation. The moon will rise higher into the southern sky; the sky will brighten, and sunrise twilight will approach. But, about 7:19 am Manitoba time, Mars will begin to reappear from behind the dark edge of the moon, slowly fading in over the 14 seconds or so of the occultation.

If you have a telescope, you can probably take pictures of the event with your phone held up to the eyepiece. Post your images to the Manitoba Museum’s Facebook, Twitter, or Instagram accounts – we’d love to see them!

01/04/20

Manitoba Skies for January 2020

This winter hasn’t been as cold as usual for Manitoba, so it’s a great time to get out and see what the January sky has to offer. Check out our Current Night Sky page for information on celestial events visible in the Manitoba skies. You can read the full article here.

If you’d like some in-depth help on becoming a backyard astronomer, there’s still space in our Introduction to Skywatching course, beginning January 15th. The course runs four consecutive Wednesday evenings and will provide you with everything you need  to feel confident finding the planets and constellations and exploring the universe from your own backyard. You can register online to make sure you get a space.

11/20/19

Possible meteor outburst – November 21, 2019

Thursday, November 20, 2019 may provide a rare meteor outburst – but only for a few minutes.

The annual Monocerotid meteor shower normally produces about 1 or 2 meteors per hour – and that’s if the sky is dark with no moon. It’s not something some skywatchers would even bother to put on the calendar. In the last couple of decades, however, astronomers have begun to understand meteor showers in more detail, and can predict when activity may pick up. This year, an outburst is predicted to occur at 10:50 p.m. Central Standard Time, and southern Manitoba is predicted to be cloud-free. So what’s going on?

A meteor (or shooting star, or falling star – they all mean the same thing) is caused when the Earth slams into a piece of interplanetary dust about the size of a grain of sand. Space isn’t totally empty – besides planets, and asteroids, and comets, there’s also smaller stuff, down to the size of microscopic dust particles. These tiny particles burn up when they hit the earth because they’re travelling at 40,000 km/h. Just the friction of passing through the air heats them up so much that they vaporize and create a trail of light that we can see from the ground. On a given night, you might see a half-dozen of these per hour if you watch the sky carefully from a dark location. Most of the time, we don’t notice these because we’re not watching the sky carefully, or nearby lights interfere and make it hard to see them.

So, one piece of dust = one meteor. It doesn’t take much of a logical leap to see that more dust means more meteors. If the earth goes through a big cloud of dust, a whole bunch of meteors will happen all on the same night. That is a meteor shower. Each year on the same night, Earth is in the same spot, and goes through the same dust bunny, creating an annual meteor shower.

Through careful analysis, astronomers have determined that the Moncerotid meteor shower has a very dense clump in it, that usually the earth just skims the edge of. But, as gravity adjusts the particles each time the Earth goes by, things change, and so this year we’re expected to hit the dense clump head-on.

How do I see it?

For the best view, you want to dress up warm, and head out of the city to a dark location. Bring a reclining lawn chair or something so you can lean back and look at at the whole sky at once. (Try to stay off the ground, which will suck heat out of you and make you cold very quickly.) Point your feet generally southeast (towards Orion the hunter, if you know your constellations) and look straight up. Don’t look at your phone, because even a quick peek will kill your night vision and maybe make you miss the whole thing.

The time is somewhat uncertain, so be prepared to stay outside in Manitoba November night temperatures for a couple of hours. I’m going to start watching about 10pm and watch until midnight (or until t happens).

What will we see?

Short answer: we won’t know for sure until it happens. But, if the prediction is correct, you’ll see the stars at first. Orion will be visible in the south, and other constellations of the winter sky as well. The brightest star in the sky, Sirius, will be just rising below Orion.  Farther left (almost due east) is another bright star, Procyon. Occasionally, you will see a shooting star flash through your field of view. As the time gets closer, you’ll see meteors more often, and the interval between them will shrink. One every 5 minutes, then 1 every couple of minutes… then two or three a minute. If you trace them backwards, they all seem to radiate from a point near Procyon. If the prediction pans out, at the peak you might be seeing 5-10 meteors per minute for several minutes around 10:50 p.m. Then, the rate will subside, back to a couple a minute, and then one every few minuets, and then back to one every 10 minutes or so.

Or, maybe nothing will happen – the Earth might miss the dust bunny completely.

Or… maybe the dust bunny is even denser than we thought, and we’ll see even more meteors than predicted. Who knows?

For more information on this shower, visit the International Meteor Organization’s page. You can also find info there on how to count meteors and contribute to the science of understanding these rare and unpredictable natural spectacles.

 

 

11/01/19

What’s Up in November’s Sky

November brings several minor meteor showers and a chance to see all five planets visible to the unaided eye. There’s also a rare transit of Mercury and a spectacular conjunction of the two brightest planets. Discover it all in the Manitoba Museum’s Manitoba Skies update for November 2019, contributed by Science Communicator Leigh McKinnon.

09/03/19

September Skies

September is a great month for stargazing. The nights are long enough that it gets dark at a reasonable time, and yet we can still see the summer constellations and Milky Way in the early evening. See what celestial sights are in store this September at the Manitoba Museum’s Manitoba Skies sky update.

08/06/19

August 2019 Sky Update available

The Sky Update for August 2019 is posted. You can find it at the Planetarium’s current night sky page. You’ll learn about pioneering astronomer Maria Mitchell, find out how to see the planets, and learn how and when t see the annual Perseid meteor shower!

07/31/18

Star-Crossed Lovers in the Summer Triangle

by Claire Woodbury, Science Communicator

“Once upon a time there was a beautiful and talented weaver, the daughter of the Sky King. She met and fell in love with a handsome and skilled herdsman. They were so devoted to each other that they neglected all else. The weaver stopped weaving and the herdsmen let his animals wander all over the place. The Sky King didn’t approve of this behaviour and separated the lovers on either side of the heavenly river. His daughter was heartbroken and despondent so the Sky King relented and allowed the couple to meet, but only once a year. Every year, on the seventh day of the seventh lunar month, a flock of magpies would fly into the sky and create a bridge, allowing the lovers to cross the heavenly river and be together.”

This classic tale of “boy meets girl, Dad doesn’t approve”, has been told since the 2nd century B.C.E. and celebrated in summer festivals in China, Japan and Korea. You can read this story every night in the summer sky. The “heavenly” river that separates the young couple is the Milky Way.  The lovers are represented by the stars Vega and Altair, two points in the asterism known as the Summer Triangle. The triangle shape is actually made up of the three brightest stars from three different constellations, Cygnus the Swan, Lyra the Harp and Aquila the Eagle. In the city, it is often difficult to see all of the very faint stars of these patterns but the brightest from each are visible on clear nights. The brightest is Vega, the dimmest Deneb, and Altair makes up the point of the triangle.  You can find the Summer Triangle higher overhead, across the sky from the Big Dipper all summer long and even into autumn.

Interested in what else you can see up in the summer sky? Head to our Current Night Sky page.

Scott Young

Manager of Science Communications and Visitor Experiences

See Full Biography

“Scott oversees Science Gallery exhibits and Planetarium shows, and collaborates on content development for Museum Galleries exhibits. He has been an informal science educator for twenty years, working in the planetarium and science centre field both at The Manitoba Museum and also at the Alive G. Wallace Planetarium in Fitchburg, Massachusetts. Scott is an active amateur astronomer and a past-President of the Royal Astronomical Society of Canada.”